EASY
Earn 100

Give an example to show that the product of two non-zero matrices is a zero matrix.

Important Questions on Matrices

MEDIUM
If P=abcbcacababc=1PTP=I then the value of a3+b3+c3 is
MEDIUM
If A is a square matrix such that A2=I, then (A-I)3+(A+I)3-7A is equal to
HARD

Let a, b, cR be all non-zero and satisfies a3+b3+c3=2. If the matrix A=abcbcacabsatisfies ATA=I, then a value of abc can be

MEDIUM
Let A and B be two 3×3 real matrices such that A2-B2 is invertible matrix. If A5=B5 and A3 B2=A2 B3, then the value of the determinant of the matrix A3+B3 is equal to :
MEDIUM
If A=5a-b32 and A.adjA=A AT , then 5a+b is equal to 
MEDIUM
Let P and Q be 3×3 matrices with PQ. If P3=Q3 and P2Q=Q2P, then determinant of P2+Q2 is equal to
EASY
If 3A+4B'=7-10170631 and 2B-3A'=-11840-5-7 then B=
EASY
Find a matrix A such that 2A-3B+5C=0, where B=-220314 and C=20-2716
EASY
The number of all 3×3 matrices A, with entries from the set -1,0,1 such that the sum of the diagonal elements of AAT is 3, is ___________.
HARD
Let P1=I=100010001, P2=100001010, P3=010100001P4=010001100, P5=001100010,P6=001010100, and
X=k=16PK213102321PKT
where PKT denotes the transpose of the matrix PK. Then which of the following options is/are correct?
HARD
Let A=aij be a real matrix of order 3×3, such that ai1+ai2+ai3=1, for i=1,2,3 . Then, the sum of all the entries of the matrix A3 is equal to:
HARD
If A is a 3×3 non-singular matrix such that AA'=A'A and B=A-1A', then BB' equals, where X' denotes the transpose of the matrix X.
MEDIUM
Let A,B,C,D be square real matrices such that CT=DAB, DT=ABC, S=ABCD, then S2 is equal to
MEDIUM
If A=klmn and knlm, then the value of A2-(k+n)A+(kn-lm)I equals
EASY

Let A be a 4×4 matrix with real entries. Consider the sets

K=x1x2x3x4: Ax1x2x3x4=0000,

J=c1c2c3c4: c1c2c3c4=Ay1y2y3y4 for some y1,y2,y3.y4R

Suppose K=J. Then, which one of the following statements is necessarily true?

MEDIUM

Using the properties of determinants show that 

xpqpxqqqx=x-px2+px-2q2.

MEDIUM
If A is a square matrix such that A2=A, then (I-A)3+A is equal to 
HARD
The total number of matrices A=02y12xy-12x-y1, x, yR, xy for which ATA=3I3 is:
HARD
For two 3×3 matrices A and B, let A+B=2B' and 3A+2B=I3, where B is the transpose of B and I3 is 3×3 identity matrix. Then :
MEDIUM

If A=12221-2a2b is a matrix satisfying the equation AAT=9I , where I is 3×3 identity matrix, then the ordered pair a, b is equal to