HARD
JEE Main/Advance
IMPORTANT
Earn 100

Given A=111241231, B=2334. Find P such that BPA=101010.

Important Questions on Matrices and Determinants

HARD
JEE Main/Advance
IMPORTANT

Show that 1-tanθ2tanθ211tanθ2-tanθ21-1=cosθ-sinθsinθcosθ

HARD
JEE Main/Advance
IMPORTANT
If Fx=cosx sinx  0sinx    cosx  0  0        0     1 then show that Fx.Fy=Fx+y. Hence prove that Fx1=Fx.
HARD
JEE Main/Advance
IMPORTANT
If A=1  0  20  2  12  0  3, then show that the matrix A is a root of the polynomial fx=x36x2+7x+2
HARD
JEE Main/Advance
IMPORTANT

Use matrix to solve the following system of equations:-

 x+y+z=3x+2y+3z=4x+4y+9z=6

HARD
JEE Main/Advance
IMPORTANT
Use matrix to solve the following system of equations

(c)x+y+z=3x+2y+3z=42x+3y+4z=7

EASY
JEE Main/Advance
IMPORTANT
Use matrix to solve the following system of equations

(d) x+y+z=3x+2y+3z=42x+3y+4z=9

HARD
JEE Main/Advance
IMPORTANT
If A=a  bc  d then prove that value of f and g satisfying the matrix equation A2+fA+gI=O are equal to trA and determinant of A respectively. Given a, b, c, d are non zero reals and I=1  00  1; O=0  00  0.
HARD
JEE Main/Advance
IMPORTANT
A3×3 is a matrix such that A=a, B=adjA such that B=b. Find the value of ab2+a2b+1S where 12S=ab+a2b3+a3b5+...... up to , and a=3.