MEDIUM
JEE Main/Advance
IMPORTANT
Earn 100

Given four non zero vectors a,b,c and d. The vectors a,b and c are coplanar but not collinear pair by pair and vector d is not coplanar with vectors a,b and c and ab^=bc^=π3, da^=α, db^=β then prove that dc^=cos-1cosβ-cosα

Important Questions on Vector Algebra

HARD
JEE Main/Advance
IMPORTANT
If O is origin of reference, point Aa; Bb; Cc; Da+b; Eb+c; Fc+a;Ga+b+c where a=a1i^+a2j^+a3k^; b=b1i^+b2j^+b3k^ and c=c1i^+c2j^+c3k^, then prove that these points are vertices of a cube having length of its edge equal to unity provided the matrix a1a2a3b1b2b3c1c2c3 is orthogonal. Also find the length XY such that X is the point of intersection of CM and GP; Y is the point of intersection of OQ and DN, where P,Q,M,N are respectively the mid-point of sides CF, BD, GF and OB.
HARD
JEE Main/Advance
IMPORTANT
Let a=3i^-j^ and b=12i^+32j^ and x=a+q2-3b, y=-pa+qb. If xy, then express p as a function of q, say p=fq, p0 and q0 and find the intervals of monotonicity of fq.
MEDIUM
JEE Main/Advance
IMPORTANT
If a=i^+j^-k^, b=-i^+2j^+2k^ & c=-i^+2j^-k^, find a unit vectors normal to the vectors a+b and b-c.
EASY
JEE Main/Advance
IMPORTANT
Prove that a×b=-b·a×a×b
MEDIUM
JEE Main/Advance
IMPORTANT
If a,b,c are non-coplanar vectors and d is a unit vector, then find the value of a·db×c+b·dc×a+c·da×b independent of d.
HARD
JEE Main/Advance
IMPORTANT
Find the vector r which is perpendicular to a=i^-2j^+5k^ and b=2i^+3j^-k^ and r·2i^+j^+k^+8=0.
MEDIUM
JEE Main/Advance
IMPORTANT
Two vertices of a triangle are at -i^+3j^ and 2i^+5j^ and its orthocentre is at i^+2j^. Find the position vector of third vertex.
HARD
JEE Main/Advance
IMPORTANT
Find the point R in which the line AB cuts the plane CDE where a=i^+2j^+k^, b=2i^+j^+2k^, c=-4j^+4k^, d=2i^-2j^+2k^ and e=4i^+j^+2k^.