MEDIUM
Earn 100

If A=123456789, find determinants using Sarrus Rule.

50% studentsanswered this correctly

Important Questions on Matrices and Determinants

MEDIUM
If area of triangle is 35 sq. units with vertices (2,6), (5,4) and k,4, then k=_____
EASY
Let A(a, 0), B(b, 2b+1) and C(0,b), b0, |b|1, be points such that the area of triangle ABC is 1 sq. unit, then the sum of all possible values of a is:
MEDIUM
If area of a triangle whose vertices are 8, 2, k, 4 and 6, 7 is 13 units then the possible integer value of k is 
EASY
Find the area of the triangle whose vertices are -2,-3,3,2 and -1,-8 using determinant method.
EASY
If the matrix 12-1-34k-426 is singular, then the value of k is equal to
EASY
Find the area of the triangle whose vertices are (-2,-3),(3,2) and  (-1,-8) by using determinant method.
EASY
Using determinants, find the values of k, if the area of triangle with vertices (-2,0),(0,4) and (0,k) is 4 square units.
MEDIUM
Find the area of triangle whose vertices are (-1,1,2), (1,2,3), (2,5,-1)
MEDIUM
If ω is a complex cube root of unity, then the matrix A=1ω2ωω2ω1ω1ω2 is a
MEDIUM
If the area of the triangle with vertices 2,5, 7,k & 3,1 is 10, then find the value of k.
MEDIUM
Find the area of the triangle with vertices 2,7,1,1 and 10,8 using determinant method.
HARD
Let two points be A1,-1 and B0,2. If a point Px', y' be such that the area of PAB=5 sq. units and it lies on the line 3x+y-4λ=0, then a value of λ is
MEDIUM
The value of x for which the matrix 8x04021260 is singular, is -
EASY
The vectors a=i^+j^+mk^, b=i^+j^+m+1k^ and c=i^j^+mk^ are coplanar
HARD
If area of ABC is 12 square units and vertices are A( x,2), B (4,1) andC-3,7, then the positive value of x.
MEDIUM
If the area of the triangle, whose vertices are 2, -6, 5, 4 and k, 4 is 35 square unit, then find the value of k.
MEDIUM
The vertices of a triangle ABC are given by position vector A(i^+j^+2k^),B(2i^+3j^+5k^) and C(i^+5j^+5k^). Find its area.
MEDIUM
The points (k, 2-2 k),(-k+1,2 k) and (-4-k, 6-2k) are collinear for
EASY
Three vertices of ABC are A1, 4, B-2, 2 and C3, 2. Then the area of ABC is
HARD
If area of triangle is 35 sq. units with vertices  2,-6,5,4 and k,4, then k is