MEDIUM
Earn 100

If H is the harmonic mean of numbers 1, 2, 22, 23,, 2n-1, then what is n/H equal to?

100% studentsanswered this correctly

Important Questions on Sequence and Series

MEDIUM
If ax=by=cz, where x,y,z are unequal positive numbers and a,b,c are in GP, then
HARD
If a1,a2,a3,.,an are in HP and fk= r=1nar-ak, then a1f1,a2f2,a3f3,,anfn are in 
MEDIUM
If cos(x-y),cosx and cos(x+y) are in HP, then cosxsec(y/2) is equal to
HARD
If a, b, c are in H.P. and if a+b2a-b+c+b2c-b>λλλ...,  then the value of λ must be
 
EASY
If the (n+1)th  term of a harmonic progression is twice the (3n+1)th term, find the ratio of the first term to the (n+1)th term. 
MEDIUM
x+y+z=15, when a, x, y, z, b are in A.P. and 1x+1y+1z=53 when a, x, y, z, b are in H.P., then the quadratic equation whose roots are 1a and 1b is
HARD
If ln(a+c),ln(ca),ln(a2b+c) are in A.P., then
HARD
If x1, x2, x3, ........, x2008 are in H.P. and Σi=12007xi xi+1=λ x1x2008, then  λ must be equal to:
MEDIUM
If harmonic mean of 12, 122, 123,1210 is λ210-1, then λ=
EASY
If 12, 14 and 16 are three continuous terms of a series. Find the nature of the series.
HARD
If the (m+1)th,(n+1)th&(r+1)th terms of an AP are in GP & m,n,r are in H P, then the ratio of the common difference to the first term of the AP is -
EASY

Find the harmonic mean between a(1-ab) and a(1+ab).

HARD
The AM of two numbers exceeds their GM by 10 and HM by 16. Find the numbers.
HARD
If ai>0, i=1, 2, 3,...,50 and a1+a2+a3+...+a50=50, then the minimum value of 1a1+1a2+1a3+...+1a50  is equal to.
HARD
Let A, G, H be A.M., G.M. and H.M. of three positive real numbers a, b, c, respectively such that G2=AH, then prove that a, b, c are terms of a G.P.
HARD
If p, q, r in harmonic progression and p&r be different having same sign then the roots of the equation px2+qx+r=0 are
EASY

Find the harmonic mean between 7 and 9

MEDIUM
Harmonic mean of the reciprocal of even numbers from 12 to 190 is