MEDIUM
JEE Main
IMPORTANT
Earn 100

If I, I1, I2 & I3 be respectively the centres of the incircle and the three escribed circles of a triangle ABC, prove that: I2I32=4R(r2+r3).

Important Questions on Properties of Triangle

MEDIUM
JEE Main
IMPORTANT
If I, I1, I2 & I3 be respectively the centres of the incircle and the three escribed circles of a triangle ABC, prove that: I3I1I2=B+C2.
MEDIUM
JEE Main
IMPORTANT
If I, I1, I2 & I3 be respectively the centres of the incircle and the three escribed circles of a triangle ABC, prove that: II12+I2I32=II22+I3I12=II32+I1I22.
HARD
JEE Main
IMPORTANT
If I, I1, I2  & I3 be respectively the centers of the incircle and the three escribed circles of a triangle ABC, then prove that area of I1I2I3=8R2cosA2cosB2cosC2=abc2r, where r is inradius, R is circumradius and a, b & c are the length of the sides opposite to angle A, B & C respectively.
HARD
JEE Main
IMPORTANT
If I, I1, I2  & I3 be respectively the centres of the incircle and the three escribed circles of a triangle ABC, prove that: II1·I2I3sinA=II2·I3I1sinB=II3·I1I2sinC.
MEDIUM
JEE Main
IMPORTANT
In triangle ABC, prove that IO2=R23-2cosA-2cosB-2cosC where O & I are circum-centre and in-centre of triangle ABC respectively and R is circum-radius.
MEDIUM
JEE Main
IMPORTANT

In a triangle ABC, prove that IP2=2r2-4R2cosAcosBcosC, where P & I are orthocentre and incentre of triangle ABC and r & R are inradius and circumradius of given triangle.

HARD
JEE Main
IMPORTANT

In a triangle ABC, prove that OG2=R2-19a2+b2+c2, where a, b, c are length of sides of triangle opposite to angle A, B & C, respectively and O & G are circum-centre and centroid of triangle and R is circum radius of given triangle.

HARD
JEE Main
IMPORTANT
In triangle ABC, prove that area of IOP=2R2sinB-C2sinC-A2sinA-B2, where I, O& P are in-centre, circum-centre and orthocentre of triangle ABC, and R is circum-radius of triangle.