HARD
Earn 100

If In=dxx2+a2n where n  I and n >I . If In and In1 are related by the relation P In=xx2+a2n-1+ Q In-1 . Find the value of P and Q in terms of n -

33.33% studentsanswered this correctly

Important Questions on Indefinite Integrals

HARD
If x5e-x2dx=gxe-x2+c, where c is a constant of integration, then g-1 is equal to
HARD
The value of the integral exx2+1x+12dx=
HARD
The integral 1+x-1xex+1xdx, is equal to 
HARD

Obtain the reduction formula for sinnxdx for an integer n2 and deduce the value of : sin4xdx

MEDIUM
If cosxdxsin3x1+sin6x23=fx1+sin6x1λ+c, where c is a constant of integration, then λfπ3 is equal to
EASY
xex1+x2dx is equal to: (where C is an arbitarary constant)
EASY
The integral coslnxdx, is equal to 
HARD
If x5e-4x3dx=148e-4x3fx+C, where C is a constant of integration, then fx is equal to
MEDIUM

If In=xnsinxdx and I6-360I2=fxcosx+gxsinx, then f1+g1=

MEDIUM
Obtain reduction formula for In=tannxdx, n being a positive integer n2 and deduce the value of tan6xdx.
HARD
The value of 2x+sin2x1+cos2xdx is equal to
HARD
The integral dx(x+4)87(x-3)67 is equal to: (where C is a constant of integration)
HARD
 If sin-1x1+xdx=Axtan-1x+Bx+C, where C is a constant of integration, then the ordered pair Ax, Bx can be
MEDIUM
The integral xxsinx+cosx2dx is equal to, (where C is a constant of integration):
MEDIUM
If f(x)dx=ψ(x), then x5f(x3)dx, is equal to 
HARD
Obtain reduction formulae for In=cotnxdx;n being a positive integer n2 and deduce the value of cot4xdx.
HARD
Obtain the reduction formula In=sinnxdxn is a positive integer n2 and deduce the value of sin4xdx.