HARD
CTET Paper 2
IMPORTANT
Earn 100

If a+b+c=0, then the value of a4+b4+c4a2b2+b2c2+c2a2 will be:

50% studentsanswered this correctly

Important Points to Remember in Chapter -1 - Algebra from Arihant Expert Team Mathematics & Pedagogy CTET & TETs Class (VI-VIII) Solutions

Algebra

Linear equations in two variables: If a, b, and r are real numbers (and if a and b are not both equal to 0) then ax + by = r is called a linear equation in two variables.

The pair of linear equations represented by lines 1x a+ b1y + c1 = 0 and a2x + b2y + c2 = 0

If a1a2!=b1b2 then the pair of linear equations has exactly one solution.

If a1a2=b1b2=c1c2 then the pair of linear equations has infinitely many solutions.

If a1a2=b1b2=c1c2  then the pair of linear equations has no solution.

Algebraic Identities:

1. a2  b2 = a  ba + b 

2. a + b2 = a2 + 2ab + b2

3. a2 + b2= a  b2+ 2ab

4. a  b2= a2  2ab + b2

5. a + b + c2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

6. a + b + c3 = a3 + b3 + c3 + 3(a + b)(b + c)(c + a)

7. a3 + b3 + c3  3abc =a + b+ ca2 + b2 + c2  ab  ac  bc

8. a  b  c 2= a2 + b2 + c2  2ab  2ac + 2bc

9. a + b3 = a3 + 3a2b + 3ab2 + b3 ; a + b3 = a3 + b3 + 3ab(a + b)

10. (a  b)3 = a3  3a2b + 3ab2  b3

11. a3  b3 =a  ba2 + ab + b2

12. a3 + b3 =a + ba2  ab + b2

13. a + b3 = a3 + 3a2b + 3ab2 + b3

14. a  b3 = a3  3a2b + 3ab2 b3

15. a + b4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

16. a  b4 = a4  4a3b + 6a2b2  4ab3 + b4

17. a4  b4 = a  ba + ba2 + b2

18. a5  b5 = a  ba4 + a3b + a2b2 + ab3 + b4

19. Ifa + b + c = 0; then

x2 + xa + b + ab =x + ax + b

20. aba + b + bcc + b + cac + a =a + bb + c c + a

21. a2b + c + b2 c + a + c2a + b + 3abc =a + b + c ab + bc + ca

22. a2b  c + b2 c  a + c2 a  b = a  bb cc  a

23. If n is a natural number, an  bn =a  ban - 1 + an - 2b+  + bn - 2a + bn - 1

24. If n is even n = 2k, an + bn =a + ban - 1  an - 2b +  + bn - 2a  bn - 1

25. If n is odd n = 2k + 1,

26.

an + bn = a + ban - 1  an - 2b +   bn - 2a + bn - 1

27.  (a + b + c + )2 = a2 + b2 + c2 +  + 2ab + ac + bc + .

Quadratic Equation:

Let us consider the equation Ax2 + Bx + C = 0, Ay2 + By + C = 0

Sign of Bx and By Sign of C Sign of root
+ + - -
+ - - +
- + + +
- - + -

Sum of its roots =-BA and product of its roots =CA.