HARD
Olympiad
IMPORTANT
Earn 100

If a,b,x and y are integers greater than 1 such that a and b have no common factors except 1 and xa=yb, show that x=nb and y=na for some integer n greater than 1.

Important Questions on Number Theory

HARD
Olympiad
IMPORTANT
Determine all pairs m, n of positive integers for which 2m+3n is a square.
HARD
Olympiad
IMPORTANT
Prove that n4+4n is not a prime number for any integer n>1.
HARD
Olympiad
IMPORTANT

Find all four-digit numbers having the following properties:

i it is a square,

ii its first two digits are equal to each other and

iii its last two digits are equal to each other.

MEDIUM
Olympiad
IMPORTANT
f a, b, c are any three integers then show that abca3-b3b3-c3c3-a3 is divisible by 7.
HARD
Olympiad
IMPORTANT
Determine the largest 3-digit prime factor of the integer 20001000.
HARD
Olympiad
IMPORTANT
If 1a+1b=1c where a, b, c are positive integers with no common factor, prove that a+b is a square.
HARD
Olympiad
IMPORTANT
Show that there is a natural number n such that n! when written decimal notation (that is, in base 10) ends exactly in 1993 zeroes.
HARD
Olympiad
IMPORTANT
Find the remainder when 21990 is divided by 1990.