MEDIUM
Earn 100

If a singular matrix A=aij2×2 always commute with B=1121 such that a11a122=k,  then k is

50% studentsanswered this correctly

Important Questions on Matrices and Determinants

MEDIUM
Let fx=sin2x-2+cos2xcos2x2+sin2xcos2xcos2xsin2xcos2x1+cos2x, x0,π. Then the maximum value of  fx is equal to
MEDIUM
If a, b, c are in A.P. then the value of the determinant x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c is
MEDIUM
If s=p+q+r, then value of s+rpqrs+pqrps+q is ...........
MEDIUM

If the system of equations x+2y+3z=34x+3y-4z=4 and 8x+4y-λz=9+μ has infinitely many solutions, then the ordered pair λ,μ is equal to

HARD
If Δr=r2r-13r-2n2n-1a12nn-1 n-1212n-13n+4, then the value of r=1n1Δr
HARD
If A is a  3×3 matrix such that 5 adjA=5, then A is equal to
MEDIUM
If for some c<0, the quadratic equation, 2cx2-22c-1x+3c2=0 has two distinct real roots, 1a and 1b, then the value of the determinant, 1+a1111+b1111+c is
MEDIUM
If ω is a complex cube root of unity, then the matrix A=1ω2ωω2ω1ω1ω2 is a
HARD
Let  fx=1+sin2xcos2xsin2xsin2x1+cos2xsin2xsin2xcos2x1+sin2x, xπ6,π3 . If α and β respectively are the maximum and the minimum values of f, then
MEDIUM
If a1,a2,..,an,. are in G.P. then log anlog an+1log an+2log an+3log an+4log an+5log an+6log an+7log an+8 is
MEDIUM
Let Dk=12k2k-1nn2+n+2n2nn2+nn2+n+2. If k=1nDk=96, then n is equal to _________.
HARD
Let ω be the complex number cos2π3+isin2π3. Then the number of distinct complex numbers z satisfying z+1ωω2ωz+ω21ω21z+ω=0 is equal to
MEDIUM
If P=1α3133244 is the adjoint of a 3×3 matrix A and A=4, then α is equal to
MEDIUM
If A=2-3-41 , then Adj3A2+12A is equal to:
MEDIUM
The characteristic equation of a matrix A is λ3-5λ2-3λ+2I=0 then adjA is equal to
MEDIUM
If a,b,c are different and aa2a3-1bb2b3-1cc2c3-1=0, then abc is equal to 
HARD
If α, β0, fn=αn+βn and 31+f11+f21+f11+f21+f31+f21+f31+f4=K1-α21-β2α-β2, then K is equal to 
HARD
Let a1, a2, a3,a10 be in G.P. with ai>0  for i=1, 2, , 10 and S be the set of pairs r, k, r, kN (the set of natural numbers) for which

logea1r a2klogea2ra3klogea3ra4klogea4r a5klogea5ra6klogea6ra7klogea7ra8klogea8ra9klogea9ra10k=0

Then the number of elements in S, is: