HARD
11th ICSE
IMPORTANT
Earn 100

If a tunnel is dug inside the earth (not necessarily through the centre) and a ball is dropped at one end of it. Show that the ball will execute SHM. Determine the time period of the ball in terms of G and density of earth and also in terms of  g and radius of the earth

Important Questions on Simple Harmonic Motion

HARD
11th ICSE
IMPORTANT

An air chamber having a volume V and a cross-sectional area of the neck is a  into which a ball of mass m can move up and down without friction. Show that when the ball is pressed down a little and released, it executes SHM. Obtain an expression for the time period of oscillations assuming pressure-volume variations of air to be isothermal.

MEDIUM
11th ICSE
IMPORTANT

From the adjoining figure obtain the SHM's of Y- projection of the radius vector of the revolving particle in each case 

Question Image

EASY
11th ICSE
IMPORTANT
The time (t) and displacement (y) relation of a particle executing SHM is given by the equation y=0.5 sin(500t+0.5) where distance is in cm and time in seconds. Calculate the values of amplitude, angular frequency, frequency and initial phase of the particle.
EASY
11th ICSE
IMPORTANT
The time (t) and displacement (y) relation of a particle executing SHM is given by the equation y=0.3 sin  20π(t+0.05) where y in meter and time in seconds. Calculate the values of amplitude, time period, initial phase and initial displacement of the particle.
EASY
11th ICSE
IMPORTANT

A body of mass 0.1 kg executing SHM according to the equation given by x= 0.5 cos 100 t+3π4 meter. Find frequency of oscillation of the particle.

EASY
11th ICSE
IMPORTANT

A body of mass 0.1 kg executing SHM according to the equation given by x= 0.5 cos 100 t+3π4 meter. Find Initial phase of the particle.

EASY
11th ICSE
IMPORTANT

A body of mass 0.1 kg  executing SHM according to the equation  given by x= 0.5 cos 100 t+3π4 meter. Find maximum velocity of the particle              

EASY
11th ICSE
IMPORTANT

A body of mass 0.1 kg executing SHM according to the equation given by x= 0.5 cos 100 t+3π4 Meter. Find Maximum acceleration of the particle.