HARD
10th ICSE
IMPORTANT
Earn 100

If b is the mean proportional between a and c, prove that (ab+bc) is the mean proportional between (a2+b2) and (b2+c2).

Important Questions on Ratio and Proportion

MEDIUM
10th ICSE
IMPORTANT

If y is the mean proportional between x and z, prove that xyz(x+y+z)3=(xy+yz+zx)3.

 

MEDIUM
10th ICSE
IMPORTANT
If a+c=mb and 1b+1d=mc, prove that a,b,c,d are in proportion.
HARD
10th ICSE
IMPORTANT

If xa=yb=zc, prove that x3a2+y3b2+z3c2=(x+y+z)3(a+b+c)2.

 

MEDIUM
10th ICSE
IMPORTANT

If xa=yb=zc, prove that

(a2x2+b2y2+c2z2a3x+b3y+c3z)3=xyzabc

MEDIUM
10th ICSE
IMPORTANT

If xa=yb=zc, prove that

ax-by(a+b)(x-y)+by-cz(b+c)(y-z)+cz-ax(c+a)(z-x)=3

 

MEDIUM
10th ICSE
IMPORTANT

If ab=cd=ef, prove that

(b2+d2+f2)(a2+c2+e2)=(ab+cd+ef)2.

MEDIUM
10th ICSE
IMPORTANT
If ab=cd=ef, prove that (a3+c3)2(b3+d3)2=e6f6.
MEDIUM
10th ICSE
IMPORTANT
If ab=cd=ef, prove that a2b2+c2d2+e2f2=acbd+cedf+aebf.