HARD
JEE Main/Advance
IMPORTANT
Earn 100

If fx=x3e1x+42-e1x,x00,x=0, then fx is

50% studentsanswered this correctly

Important Questions on Continuity and Differentiability

HARD
JEE Main/Advance
IMPORTANT
If fx=xx+1-x, be a real valued function, then
HARD
JEE Main/Advance
IMPORTANT

   Given fx=logaa[x]+[-x]xa2x+-xx-53+a1|x|forx00forx=0a>1 where [.] represents the integral part function, then

HARD
JEE Main/Advance
IMPORTANT

If fx=x2-1x2+1, 0<x214x3-x2, 2<x394x-4+2-x, 3<x<4, then

HARD
JEE Main/Advance
IMPORTANT
If f(x) is differentiable everywhere, then
HARD
JEE Main/Advance
IMPORTANT

Let f(x) be defined in [-2,2] by fx=max(4-x2,1+x2),  -2x0min(4-x2,1+x2),  0<x2, then fx

HARD
JEE Main/Advance
IMPORTANT
Let fx=x-x2 and gx=max(ft,0tx),0x1sinπx,x>1, then in the interval [0,)
HARD
JEE Main/Advance
IMPORTANT

Consider the following statements:
S1:   Number of points where f(x)=xsgn1-x2 is non-differentiable is 3
S2:   Defined fx=asinπ2x+1, x0tanx-sinxx3, x>0, in order that, fx is continuous, 'a' should be equal to 12

S3:   The set of all points, where the function x2|x|3 is differentiable is (-,0)(0,)
S4:   Number of points where fx=1sin-1(sinx) is non-differentiable in the interval (0,3π) is 3 . State, in order, whether S1,S2,S3,S4 are true or false

HARD
JEE Main/Advance
IMPORTANT

Consider the following statements:

S1: Let fx=sinπx-π1+[x]2 where [.] stands for the greatest integer function. Then f(x) is discontinuous at x=n+π, nI.
S2: The function  f(x)=p[x+1]+q[x-1], where [.] denotes the greatest integer function is continuous at x=1 if p+q=0.
S3: Let f(x)=|[x] x| for -1x2, where [.] is greatest integer function, then f is not differentiable at x=2.
S4: If f(x) takes only rational values for all real x and is continuous, then f'(10)=10.

Mark F if the statement is false and T if the statement is true.