MEDIUM
Earn 100

If in ΔABC, the line joining the circum-centre and the in-centre is parallel to BC, then-

50% studentsanswered this correctly

Important Questions on Properties of Triangle

MEDIUM
Let D, E, F be points on the sides BC, CA, AB of a triangle ABC, respectively. Suppose AD, BE, CF are concurrent at P. If PFPC=23, PEPB=27 and PDPA=mn where m, n are positive integers with gcd(m,n)=1. Find m+n.
MEDIUM
If I be the centre of the incircle of a triangle ABC, prove that AI=rcosecA2. where r is the radius of the incircle.
HARD
Value of ap+bq+cr is equal to (where a,b,c are length of sides BC, CA and AB respectively)
EASY
For a triangle ABC,R=52 and r=1. Let D,E and F be the feet of the perpendicular from incentre I to BC, CA and AB, respectively. Then the value of (IA)(IB)(IC)(ID)(IE)(IF) is equal to _________
HARD
In ABC, it is given that the distance between the circumcentre (O) and orthocentre (H) is R1-8cosAcosBcosC. If Q is the mid-point of OH, then AQ is
EASY
ABC is an acute - angled triangle with circumcentre 'O' and orthocentre H. If AO=AH, then angle A is
MEDIUM
If the length of median AA1,BB1 and CC1 of ΔABC are ma,mb and mc, respectively. Then,
HARD
In triangle ABC, prove that area of IOP=2R2sinB-C2sinC-A2sinA-B2, where I, O& P are in-centre, circum-centre and orthocentre of triangle ABC, and R is circum-radius of triangle.
MEDIUM

If I is incentre of triangle ABC, prove that: IA·IB·IC=abctanA2tanB2tanC2, where a, b, c are length of sides opposite to angle A, B & C.

 

HARD
Consider a ABC and D, E and F are the foot of the perpendicular drawn from the vertices A, B and C respectively. Let H be the orthocentre of the triangle ABC. Then the value of cosA·cosB·cosCcos2A+cos2B+cos2C is:
HARD
If H is the orthocentre of ΔABC, R= circumradius and P=AH+BH+CH, then
MEDIUM
In ΔABC, AC=3, BC=4 and medians AD and BE are perpendicular, then find the value of AB2.
MEDIUM
If the distances of the vertices of a triangle from the point of contact of the incircle with the sides be αβγ then r is equal to (where r=inradius)
HARD
In a ∆ABC, the line joining circumcenter to the incenter is parallel to BC, then value of cos B + cos C is
EASY
Prove that the product of the distance of the in-centre from the angular points of a triangle is 4Rr2.
HARD
Consider a ABC and D, E and F are the foot of the perpendicular drawn from the vertices A, B and C respectively. Let H be the orthocentre of the triangle ABC. Then the value of R is:
MEDIUM
In ΔABC, b=12 units, c=5 units and Δ=30 sq. units. If d is the distance between vertex A and incentre of the triangle, then the value of d2 is
HARD
In triangle ABC prove that area of IPG=43R2sinB-C2sinC-A2sinA-B2, where I, P & G are incentre, circumcentre and orthocentre of triangle and R is circumradius of given triangle.
MEDIUM
If I, I1, I2 & I3 be respectively the centres of the incircle and the three escribed circles of a triangle ABC, prove that: I2I3=a·cosecA2.