Scan to download the App
E M B I B E
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
Share
HARD
Earn 100
If
sinh
2
tanh
-
1
x
=
11
60
,
then
x
=
(a)
-
11
(b)
-
1
11
(c)
1
11
(d)
11
75% students
answered this correctly
Check
Important Questions on Hyperbolic Functions
EASY
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
cot
h
-
1
(
2
)
+
cosec
h
-
1
(
-
2
2
)
=
MEDIUM
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
sin
h
-
1
-
2
+
cosec
h
-
1
-
2
+
cot
h
-
1
-
2
=
HARD
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
Let
k
>
0
and
t
=
sech
-
1
1
2
-
cosech
-
1
3
k
.
If
3
e
t
=
2
+
3
,
then
k
=
MEDIUM
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
e
sec
h
-
1
1
2
+
tan
h
-
1
1
2
+
sin
h
-
1
1
2
=
EASY
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
tan
h
-
1
1
3
+
cot
h
-
1
2
=
MEDIUM
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
The domain of the function
f
x
=
sec
-
1
3
x
-
4
+
tan
h
-
1
x
+
3
5
is
EASY
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
coth
-
1
3
+
tanh
-
1
1
3
-
cosech
-
1
-
3
=
MEDIUM
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
x
=
log
1
y
+
1
+
1
y
2
⇒
y
is equal to
HARD
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
If
sinh
x
=
3
4
and
cosh
y
=
5
3
then
x
+
y
=
HARD
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
For
0
<
x
≤
π
,
sin
h
-
1
cot
x
is equal to
EASY
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
tan
h
-
1
1
2
+
cot
h
-
1
3
=
HARD
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
sin
h
-
1
x
1
-
x
2
is equal to
HARD
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
If
tan
h
-
1
x
=
alog
1
+
x
1
-
x
,
x
<
1
,
then a is equal to
HARD
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
If
sech
-
1
1
2
-
cosech
-
1
3
4
=
log
e
k
,
then
MEDIUM
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
If
sin
h
-
1
(
8
)
+
sin
h
-
1
(
24
)
=
α
,
then
sin
h
α
=
HARD
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
If
tan
h
-
1
x
+
i
y
=
1
2
tan
h
-
1
2
x
1
+
x
2
+
y
2
+
i
2
tan
-
1
2
y
1
-
x
2
-
y
2
, where
x
,
y
∈
R
, then
tan
h
-
1
i
y
=
HARD
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
sec
h
-
1
(
sin
θ
)
is equal to
EASY
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
If for
x
>
1
tanh
-
1
1
x
+
coth
-
1
x
=
log
e
f
x
,
then
f
-
5
=
EASY
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
2
tan
h
-
1
1
2
is equal to
EASY
Mathematics
>
Trigonometry
>
Hyperbolic Functions
>
Definition of Inverse Hyperbolic Functions
The imaginary part of
tan
-
1
cos
θ
+
i
sin
θ
is