
If the eccentricity of an ellipse whose latus rectum is one half of its major axis is , then find .


Important Questions on Ellipse
Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.

Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.

Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.

Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.

Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.

Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.

Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.

Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.
