HARD
MHT-CET
IMPORTANT
Earn 100

If the volume of the tetrahedron formed by the coterminous edges a, b and c is 4, then the volume of the parallelepiped formed by the coterminous edges a×b, b×c and c×a is

50% studentsanswered this correctly

Important Questions on Vectors

EASY
MHT-CET
IMPORTANT
The volume of the parallelepiped whose edges are represented by -12i^+αk^, 3j^-k^ and 2i^+j^-15k^ is 546 cu. units, then α=
MEDIUM
MHT-CET
IMPORTANT
The vectors AB=3i^+5j^+4k^ and AC=5i^-5j^+2k^ are the sides of a triangle ABC. The length of the median through A is
MEDIUM
MHT-CET
IMPORTANT
A4,3,5, B0,-2,2 and C3,2,1 are three points. The coordinates of the point in which the bisector of BAC meets the side BC¯ is 
EASY
MHT-CET
IMPORTANT
If 4i^+7j^+8k^, 2i^+3j^+4k^ and 2i^+5j^+7k^ are the position vectors of the vertices A, B and C, respectively, of triangle ABC. The position vector of the point where the bisector of angle A meets BC is
MEDIUM
MHT-CET
IMPORTANT
Consider points A, B,C and D with position vectors 7i^-4j^+7k^, i^-6j^+10k, -i^-3j^+4k^  and 5i^-j^+k^, respectively. Then, ABCD is a
EASY
MHT-CET
IMPORTANT
In a right-angled triangle ABC, the hypotenuse AB=p. Then, AB·AC+BC·BA+CA·CB is equal to
EASY
MHT-CET
IMPORTANT
If a,b,c are the vectors of which every pair is noncollinear. If the vector a+b and b+c are collinear with c and a respectively, then a+b+c is
MEDIUM
MHT-CET
IMPORTANT
If a, b, c are three non-coplanar vectors such that r1=a-b+c, r2=b+c-a, r3=c+a+a, r=2a-3b+4c. If r=λ1r1+λ2r2+λ3r3, then