MEDIUM
12th CBSE
IMPORTANT
Earn 100

If y=sin(logx) prove that x2d2ydx2+xdydx+y=0

Important Questions on Higher Order Derivatives

MEDIUM
12th CBSE
IMPORTANT
If y=3e2x+2e3x prove that d2ydx2-5dydx+6y=0
MEDIUM
12th CBSE
IMPORTANT
If y=cot-1x2, prove that y2x2+12+2xx2+1y1=2
MEDIUM
12th CBSE
IMPORTANT
If y=cosec-1x, x>1, then show that xx2-1d2ydx2+2x2-1dydx=0.
MEDIUM
12th CBSE
IMPORTANT
If x=cost+logtant2, y=sint, then find the value of d2ydt2 and d2ydx2 at t=π4.
MEDIUM
12th CBSE
IMPORTANT
If x=asint and y=acost+logtant2, find d2ydx2.
MEDIUM
12th CBSE
IMPORTANT
If  x=a(cost+tsint) and y=a(sint-tcost), then find the value of d2ydx2 at t=π4.                            
HARD
12th CBSE
IMPORTANT
If x=acost+logtant2 and y=a(sint), evaluate d2ydx2 at t=π3.
MEDIUM
12th CBSE
IMPORTANT
If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t), then find d2ydx2