HARD
Earn 100

In a third order determinant, each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of the third column consists of sum of four terms. Then, it can be decomposed into n determinant, where n has the value

50% studentsanswered this correctly

Important Questions on Matrices and Determinants

MEDIUM
If a1,a2,a3,a9 are in AP, then the value of a1a2a3a4a5a6a7a8a9 is
MEDIUM
If a+x=b+y=c+z+1, where a, b, c, x, y, z are non-zero distinct real numbers, thenxa+yx+ayb+yy+bzc+yz+c is equal to :
HARD
If Δ=x22x33x42x33x44x53x55x810x17=Ax3+Bx2+Cx+D, then B+C  is equal to :
MEDIUM
If ar=(cos2rπ+isin2rπ)1/9, then the value of a1a2a3a4a5a6a7a8a9 is equal to
MEDIUM
A value of θ0,π3, for which 1+cos2θsin2θ4cos6θcos2θ1+sin2θ4cos6θcos2θsin2θ1+4cos6θ=0, is
MEDIUM
If Sr=2rxn(n+1)6r2-1yn2(2n+3)4r3-2nrzn3(n+1), then the value of r=1nSr is independent of
MEDIUM
Let m and M be respectively the minimum and maximum value values of cos2x1+sin2xsin2x1+cos2xsin2xsin2xcos2xsin2x1+sin2x Then the ordered pair (m, M) is equal to:
 
EASY

If x,y,zR, then the value of the determinant 

5x+5-x25x-5-x216x+6-x26x-6-x217x+7-x27x-7-x21

MEDIUM
Let a-2b+c=1.
If fx=x+ax+2x+1x+bx+3x+2x+cx+4x+3, then:
EASY
Let A=aij and B=bij be two 3×3 real matrices such that bij=3i+j-2aij , where i,j=1,2,3 . If the determinant of B  is  81,   then determinant of A i  s
MEDIUM
If a, b, c are roots of the equation x3+px+q=0, then the value of abcbcacab is
MEDIUM
If A=-4-131 , then the determinant of the matrix A2016-2A2015-A2014 is :
MEDIUM
If y=sinmx, then the value of the determinant yy1y2y3y4y5y6y7y8, where yn=dnydxn, is
MEDIUM
If a2bcc2+aca2+abb2caabb2+bcc2=ka2b2c2, then k=
HARD
If a, b, c are the integers between 1 and 9 and a 51, b 41, c 31 are three-digit numbers and the value of determinant D=543a51b41c31abc is zero, then a, b & c are
EASY
Let A be a square matrix of order 3×3, then 5A=
EASY
The value of the determinant a-bb+cab-cc+abc-aa+bc
HARD
Let α  and β be the roots of the equation x2+x+1=0. Then for y0 in R, y+1αβαy+β1β1y+α is equal to
MEDIUM
Let a,b,c be such that (b+c)0 and

aa+1a-1-bb+1b-1cc-1c+1+a+1b+1c-1a-1b-1c+1-1n+2a-1n-1b-1nc=0

Then the value of n is