HARD
11th Tamil Nadu Board
IMPORTANT
Earn 100

Integrate the following with respect to x 

x sin 3x

Important Points to Remember in Chapter -1 - Integral Calculus from Tamil Nadu Board Mathematics Standard 11 Vol II Solutions

1. Newton-Leibnitz integral:

A function Fx is called an antiderivative of a function fx on an interval I if F'(x)=f(x) for every value of x in I.

2. Fundamental Integration Formula

(i) xndx=xn+1n+1+C, n-1

(ii) x-1dx=1xdx=logx+C

(iii) exdx=ex+C

(iv) axdx=axloga+C

(v) logx dx=xlogx-x+C

(vi) 1x2dx=-1x+C

(vii) 1xdx=2x+C

(viii) sinx dx=-cosx+C

(ix) cosx dx=sinx+C

(x) tanx dx=logsecx+C

(xi) cosecx dx=logcosecx-cotx+C

(xii) secx dx=logsecx+tanx+C

(xiii) cotx dx=logsinx+C

(xiv) 11-x2dx=sin-1x+C

(xv) 11+x2dx=tan-1x+C

(xvi) 1xx2-1dx=sec-1x+C

(xvii) sec2x dx=tanx+C

(xviii) cosecx cotx dx=-cosecx+C

(ix) secxtanx dx=secx+C

(xx) cosec2x dx=-cotx+C

Note: If f(x)dx=F(x)+C, then, fax+bdx=Fax+ba+C

3. Some Standard Results of Integration:

(i) 1x2+a2dx=logx+x2+a2+C

(ii) 1x2-a2dx=logx+x2-a2+C

(iii) 1x2-a2dx=12alogx-ax+a+C

(iv) 1a2-x2dx=12aloga+xa-x+C

(v) a2-x2dx=x2a2-x2+a22sin-1xa+C

(vi) a2+x2dx=x2a2+x2+a22logx+a2+x2+C

(vii) x2-a2dx=x2x2-a2-a22log|x+x2-a2|+C

4. Integration by the Method of Substitution:

(i) To integrate, the integrals of the form[f(x)]nf'xdx:

(a) Put fx=t f'xdx=dt

(b)fxnf'xdx=tndt=tn+1n+1+C=fxn+1n+1+C

5. Integration by the Method of Partial Fractions:

If the integrand is in the form of an algebraic fraction and the integral cannot be evaluated by simple methods, then the fraction needs to be expressed in partial fractions before integration takes place.

Form of the proper rational function Form of the associated partial fractions
mx+nx-ax-b Ax-a+Bx-b
lx2+mx+nx-ax-bx-c Ax-a+Bx-b+Cx-c
lx2+mx+nx-a2x-b Ax-a+Bx-a2+Cx-b
lx2+mx+nx-a3x-b Ax-a+Bx-a2+Cx-a3+Dx-b
lx2+mx+nx-ax2+bx+c A(x-a)+Bx+C(x2+bx+c), where x2+bx+c cannot further be factored.

6. Integrals of the form eaxsinbx dx and eaxcosbx dx:

(i) eaxsinbx dx=eaxa2+b2[asinbx-bcosbx]+C

(ii) eaxcosbx dx=eaxa2+b2[acosbx+bsinbx]+C

7. Integrals of the Formpx+qax2+bx+cdx:

Put px+q=Addxax2+bx+c+B=A(2ax+b)+B, where A and B are determined by comparing coefficients on both sides.

8. Integrals of the Form dxacosx+bsinx+c:

Express sinx and cosx in terms of tanx2. And then substitute tanx2=t.

9. Integrals of the form pcosx+qsinxacosx+bsinxdx:

Put p cos x+q sin x=Aa cos x+b sin x+Bddxa cos x+b sin x, where A and B are constants to be found by solving the equations obtained by equating the corresponding coefficients of sinx and cosx on both sides.

10. Integration by Parts:

(i) f1x·f2xdx=f1xf2xdx-ddxf1x·f2xdxdx, where f1x is considered as the I function and f2x as the II function. We generally follow the rule ‘ILATE’ to determine which of the two functions is to be I and which of the two functions is to be the II.

(ii) exfx+f'x dx=exfx+C.