Scan to download the App
E M B I B E
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
Share
EASY
Earn 100
Integrate
w
.
r
.
t
x
,
(
log
x
)
2
(a)
x
(
log
x
)
2
-
2
x
log
x
+
2
x
+
k
(b)
x
(
log
x
)
2
+
2
x
log
x
+
2
x
+
k
(c)
x
(
log
x
)
2
-
2
log
x
+
2
x
+
k
(d)
x
(
log
x
)
2
+
2
log
x
+
2
x
+
k
50% students
answered this correctly
Check
Important Questions on Definite Integrals
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
Let
P
x
=
x
2
+
b
x
+
c
be a quadratic polynomial with real coefficients such that
∫
0
1
P
x
d
x
=
1
and
P
x
leaves remainder
5
when it is divided by
x
-
2
. Then the value of
9
b
+
c
is equal to:
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
∫
1
3
d
x
1
+
x
2
equals
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
∫
1
e
log
x
d
x
=
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
If
f
:
R
→
R
is given by
f
(
x
)
=
x
+
1
,
then the value of
lim
n
→
∞
1
n
f
0
+
f
5
n
+
f
10
n
+
…
.
.
+
f
5
(
n
-
1
)
n
is:
MEDIUM
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
If
∫
0
π
2
c
o
t
x
c
o
t
x
+
cosec
x
d
x
=
m
(
π
+
n
)
,
then
m
n
is equal to
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
Let
f
x
=
a
x
2
+
b
x
+
c
,
a
,
b
,
c
∈
R
,
a
>
0
and roots of
f
x
=
0
are not real numbers. The value of
∫
0
e
arg
-
i
f
x
d
x
is
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
The value of
∫
0
π
2
1
+
2
cos
x
(
2
+
cos
x
)
2
d
x
is
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
∫
-
π
4
π
4
sec
2
x
d
x
is equal to
MEDIUM
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
The integral
∫
π
6
π
3
s
e
c
2
3
x
·
c
o
s
e
c
4
3
x
d
x
is equal to
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
∫
0
1
x
1
-
x
5
d
x
=
…
…
.
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
The value of
lim
n
→
∞
1
n
∑
j
=
1
n
2
j
-
1
+
8
n
2
j
-
1
+
4
n
is equal to:
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
The integral
∫
π
4
3
π
4
d
x
1
+
cos
x
is equal to
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
∫
0
π
2
cos
2
x
2
-
sin
2
x
2
dx
=
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
∫
0
2
2
-
x
2
d
x
=
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
The limit
lim
n
→
∞
1
n
2020
∑
k
=
1
n
k
2019
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
Find
∫
0
2
f
(
x
)
d
x
,where
f
(
x
)
=
max
x
,
x
2
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
If
∫
0
k
4
x
3
d
x
=
16
, then the value of
k
is _____
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
Let
f
be a continuous function in
[
0
,
1
]
, then
lim
n
→
∞
∑
j
=
0
n
1
n
f
j
n
is
EASY
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
The integral
∫
π
12
π
4
8
cos
2
x
tan
x
+
cot
x
3
d
x
equals
MEDIUM
Mathematics
>
Integral Calculus
>
Definite Integrals
>
Evaluation of Definite Integrals
If
∫
0
π
/
3
tan
θ
2
k
sec
θ
d
θ
=
1
-
1
2
,
(
k
>
0
)
, then the value of
k
is