HARD
JEE Main
IMPORTANT
Earn 100

Let $\left\{a_k\right\}$ and $\left\{b_k\right\}, k \in \mathbb{N}$, be two G.P.s with common ratio $r_1$ and $r_2$ respectively such that $\mathrm{a}_1=\mathrm{b}_1=4$ and $\mathrm{r}_1<\mathrm{r}_2$. Let $\mathrm{c}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}+\mathrm{b}_{\mathrm{k}}, \mathrm{k} \in \mathbb{N}$. If $\mathrm{c}_2=5$ and $\mathrm{c}_3=\frac{13}{4}$ then $\sum_{\mathrm{k}=1}^{\infty} \mathrm{c}_{\mathrm{k}}-\left(12 \mathrm{a}_6+8 \mathrm{~b}_4\right)$ is equal to

100% studentsanswered this correctly

Important Questions on Sequences and Series

HARD
JEE Main
IMPORTANT
n=0n3((2n)!)+(2n-1)(n!)(n!)((2n)!)=ae+be+c where   a, b, c   and  e=n=01n!  Then a2-b+c is  equal to _______
EASY
JEE Main
IMPORTANT
Let a,b,c>1,a3,b3 and c3 be in A.P. and logab, logca and logbc be in G.P. If the sum of first 20 terms of an A.P., whose first term is a+4b+c3 and the common difference is a-8b+c10 is -444, then abc is equal to
EASY
JEE Main
IMPORTANT

The 8th  common term of the series
S1=3+7+11+15+19+

S2=1+6+11+16+21+. is

HARD
JEE Main
IMPORTANT
If the sum and product of four positive consecutive terms of a G.P., are 126 and 1296, respectively, then the sum of common ratios of all such GPs is
MEDIUM
JEE Main
IMPORTANT
Let a1,a2,,an be in A.P. If a5=2a7 and a11=18, then 121a10+a11+1a11+a12+..1a17+a18 is equal to _____ .
MEDIUM
JEE Main
IMPORTANT
The sum 12-2.32+3.52-4.72+5.92-..+15.292 is _____ .
MEDIUM
JEE Main
IMPORTANT

The sum to 10 terms of the series

11+12+14+21+22+24+31+32+34+is :-