MEDIUM
JEE Main/Advance
IMPORTANT
Earn 100

Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series 12+2·22+32+2·42+52+2·62+ If B-2A=100λ, then λ is equal to

50% studentsanswered this correctly

Important Questions on Progression and Series

HARD
JEE Main/Advance
IMPORTANT
Let a1, a2, a3,, a49 be in A.P. such thatk=012a4k+1=416 and a9+a43=66. If a12+a22++a172=140m, then m is equal to
HARD
JEE Main/Advance
IMPORTANT
Let a1, a2, a3,. be in harmonic progression with a1=5 and a20=25. The least positive integer n for which an<0 is
HARD
JEE Main/Advance
IMPORTANT
The value of k=1131sin π4+k-1π6 sin π4+kπ6is equal to
HARD
JEE Main/Advance
IMPORTANT
Let bi > 1 for i=1, 2, ..., 101. Suppose logeb1, logeb2, ......,logeb101 are in arithmetic progression A.P. with the common difference loge2 . Suppose a1, a2,...., a101 are in A.P. such that a1=b1 and a51=b51 . If t=b1+b2+..+b51 and s=a1+a2+...+a51, then
HARD
JEE Main/Advance
IMPORTANT
Let Sn=k=14n-1kk+12 k2. Then Sn can take value s
HARD
JEE Main/Advance
IMPORTANT
Let Sk, k=1,2...., 100, denote the sum of the infinite geometric series whose first term is k-1k ! and the common ratio is 1k, then the value of 1002100 !+k=1100k2-3k+1Sk is
HARD
JEE Main/Advance
IMPORTANT
Let a1, a2, a3,...., a11 be real numbers satisfying a1=15, 27-2a2>0 and ak=2ak-1-ak-2 for k=3, 4,..., 11. If a12+a22+....+a11211=90, then the value of a1+a2+...+a1111 is equal to            .
HARD
JEE Main/Advance
IMPORTANT
Let a1, a2, a3,...a100 be an arithmetic progression with a1=3  and Sp=i=1pai , 1p100. For any interger n with 1n20, let m=5n. If SmSn does not depend on n, then a2 is               .