MEDIUM
JEE Main
IMPORTANT
Earn 100

Let a=i^+j^-k^ and c=2i^-3j^+2k^. Then the number of vectors b such that b×c=a and b1,2,,10 is

100% studentsanswered this correctly

Important Questions on Vector Algebra

MEDIUM
JEE Main
IMPORTANT
The shortest distance between the lines x-32=y-23=z-1-1 and x+32=y-61=z-53 is
HARD
JEE Main
IMPORTANT
Let a and b be the vectors along the diagonal of a parallelogram having area 22. Let the angle between a and b be acute. a=1 and a.b=a×b. If c=22a×b-2b, then an angle between b and c is
HARD
JEE Main
IMPORTANT
If   a=2i^+j^+3k^,  b=3i^+3j^+k^   and c=c1i^+c2j^+c3k^ are coplanar vectors and a·c=5,bc, then 122c1+c2+c3 is equal to ______.
MEDIUM
JEE Main
IMPORTANT
Let a=αi^+2j^-k^ and b=-2i^+αj^+k^, where αR. If the area of the parallelogram whose adjacent sides are represented by the vectors a and b is 15α2+4, then the value of 2a2+a·bb2 is equal to
MEDIUM
JEE Main
IMPORTANT
Let a be a vector which is perpendicular to the vector 3i^+12j^+2k^. If a×2i^+k^=2i^-13j^-4k^, then the projection of the vector a on the vector 2i^+2j^+k^ is
MEDIUM
JEE Main
IMPORTANT
Let a=αi^+3j^-k^,b=3i^-βj^+4k^ and c=i^+2j^-2k^ where α,βR be three vectors. If the projection of a on c is 103 andb×c=-6i^+10j^+7k^ , then the value of α+β equal to
MEDIUM
JEE Main
IMPORTANT

Let A, B, C be three points whose position vectors respectively are:

a=i^+4j^+3k^

b=2i^+αj^+4k^, αR

c=3i^-2j^+5k^

If α is the smallest positive integer for which a, b, c are non-collinear, then the length of the median of ABC through A is:

MEDIUM
JEE Main
IMPORTANT
Let a=i^-2j^+3k^, b=i^+j^+k^ and c be a vector such that a×(b+c)=0, then the value of 3c.a is equal to _______.