HARD
Earn 100

Let f(x) be a continuous and g(x) be a discontinuous function. Prove that f(x)+g(x) is a discontinuous function.

Important Questions on Continuity and Differentiability

MEDIUM
The set of points of discontinuity of the function fx= limn2sinx2n3n-2cosx2n is given by
MEDIUM
Let fx=2x2+1 and gx=2x-3,x<02x+3,x0, where t is the greatest integer t. Then, in the open interval -1,1, the number of points where fog is discontinuous is equal to ______.
MEDIUM

Let x be the greatest integer x. Then the number of points in the interval (2, 1) where the function fx=x+x-x is discontinuous, is _____.

EASY
If fx=logsec2xcot2xforx0Kforx=0 is continuous at x=0 then K is
MEDIUM

Discuss the continuity of the following function in its domain, where

fx=x2-4, for 0x2     =2x+3, for 2<x4     =x2-5, for 4<x6

MEDIUM
If the function f defined as fx=1x-k-1e2x-1, x0 is continuous at x=0, then ordered pair k,f0 is equal to
HARD
Let f,g:RR be functions defined by
fx=x,  x<01-x,  x0 and
gx=ex-x,x<0x-12-1,x0
where x denote the greatest integer less than or equal to x. Then, the function fog is discontinuous at exactly
EASY
If the function fx=2+cosx-1π-x2,xπk,x=π is continuous at x=π, then k equals
EASY

Show that the function

fx=x if x15 if x>1

is not continuous at x=1.

MEDIUM
Let f:0,2 be defined by fx=x-x+12, where x denotes the greatest integer less than equal to x. At how many points of 0,2, is f discontinuous ?
EASY
The value of k which the function fx= 45tan4xtan5x,0<x<π2k+25,x=π2 is continuous at x=π2, is
MEDIUM
Let f(x)=x·x2, for -10<x<10, where t denotes the greatest integer function. Then the number of points of discontinuity of fx is equal to
HARD
Let f :0, πR be defined as

fx=sinx,ifx is irrational and x0,πtan2x,ifx is rational and x0,π,

The number of points in 0, π at which the function f is continuous is
HARD
Let k be a non - zero real number. If fx=(ex1)2sinxklog1+x4,x012,x=0 is a continuous function at x=0, then the value of k is
EASY
Consider the function fx=x+5x-2ifx21ifx=2 . Then ffx is discontinuous
HARD
Let a,bR,a0. If the function f, defined as

fx=2x2a, 0x<1a, 1x<22b2-4bx3, 2x<8,is continuous in the interval 0, , then an ordered pair a,b can be 
EASY
If fx =1x;x 1ax2+b;1<x<1 is differentiable x , then one of the value of a and b is-
HARD
The number of points where the function fx=2x2-3x-7 if   x-14x2-1 if -1<x<1x+1+x-2 if   x1, where t denotes the greatest integer t, is discontinuous is ______
EASY
If f(x)=|x|x,x01,x=0, prove that function f(x) is discontinuous at x=0