HARD
JEE Main/Advance
IMPORTANT
Earn 100

Let f:0,R be given by fx=1xxe-t+1tdtt. Then 

66.67% studentsanswered this correctly

Important Questions on Definite Integration

HARD
JEE Main/Advance
IMPORTANT
The following integral π4π22cosecx17dx is equal to
HARD
JEE Main/Advance
IMPORTANT

Let f:RR be a function defined by xfx=x,0,x2x>2 where x is the greatest integer less than or equal to. If I=-12xfx22+fx+1dx, then the value of 4I-1 is

HARD
JEE Main/Advance
IMPORTANT
Let f:RR be a continuous odd function, which vanishes exactly at one point and f1=12. Suppose that Fx=-1xftdt for all x-1,2 and Gx=-1xtfftdt for all x-1,2. If limx1FxGx=114, then the value of f12 is
HARD
JEE Main/Advance
IMPORTANT

Let fx=7tan8x+7tan6x3tan4x3 tan2x  for all xπ2,π2 . Then, the correct expression(s) is/are 

HARD
JEE Main/Advance
IMPORTANT
Let f'x=192x32+sin4πx for all xR with f12=0. If m121fxdxM, then the possible values of m and M are
HARD
JEE Main/Advance
IMPORTANT
Let Fx=xx2+π62cos2dt for all xR & f:0,12[0,) be a continuous function. For a0, 12, if F'a+2 is the area of the region bounded by x=0, y=0, y=fx & x=a, then f0 is ____.  
HARD
JEE Main/Advance
IMPORTANT
The total number of distinct x0,1 for which 0xt21+t4dt=2x-1 is ___.
HARD
JEE Main/Advance
IMPORTANT
The value of -π2π2x2cosx1+exdx is equal to