HARD
Earn 100

Let f:0,10,1, be a non-constant continuous function different from the identity function. Then

50% studentsanswered this correctly

Important Questions on Continuity and Differentiability

EASY
The number of real roots of the equation e4x+2e3x-ex-6=0 is :
EASY
If f(x)=1x, for 0<x1=k, for x=0 is continuous at x=0, then k=_____
MEDIUM
If f: be defined by f(x)=x-[x], where [x] denotes the greatest integer less than or equal to x. Also let S denote the range of f. Which of the following is TRUE?
MEDIUM

Function fx is continuous on its domain -2,2, where 

fx=sinaxx+2, for 2x<03x+5, for 0x1x2+8b,for 1<x2

Find the value of a+b+2

EASY
Let f:RR be a continuous function. Then, f is surjective if
HARD
Let g :RR be a differentiable function with g0=0, g'0=0 and g'1 0.  Let fx= x|x| gx,x 00,x=0 and hx=e|x| for all xR. Let foh (x) denote fhx& (hof) (x) denote hfx .Then which of the following is (are) true?
EASY
Prove that the function defined by fx=cosx2 is a continuous function.
MEDIUM
If f(x)=13tanxπ6x, for xπ6 is continuous at x=π6, find fπ6.
MEDIUM
Discuss the continuity of the function fx=log(2+x)log(2x)tanx, for x01, for x=0at the point x=0.
EASY
Consider the function fx=x+5x-2ifx21ifx=2 . Then ffx is discontinuous
HARD
Let f x = { x + a , if  x < 0 x - 1 , if  x 0  and  g x = { x + 1 , if  x < 0 x - 1 2 + b , if  x 0 , where a and b are non-negative real numbers. If the composite function gof( x ) is continuous for all real x , then the values of a and b are
MEDIUM
The function fx=x2x2 (where y is the greatest integer less than or equal to y), is discontinuous at -
MEDIUM
Which of the following is not continuous for all real values  of x.
HARD
Let f: RR be any function and g: RR is defined by gx=fx for all x, then g is
MEDIUM
If fx=11x, then the points of discontinuity of the function f3nx is/are (where fn=fof.of n times)
MEDIUM

Let  f(x) = sgn (x) and g(x) = x(x2-5x+6). The function f(g(x)) is discontinuous at

EASY
If f(x) be a continuous function defined for 1x≤3, fxQx1,3, f2=10, (where Q is a set of all rational numbers), then f(1.8) is