HARD
Mathematics
IMPORTANT
Earn 100

Let f:RR and g:RR be defined as fx=x+a,x<0|x-1|,x0 and gx=x+1,x<0(x-1)2+b,x0, where a, b are non-negative real numbers. If gof(x) is continuous for all xR, then a+b is equal to ______ .

50% studentsanswered this correctly

Important Questions on Functions

HARD
Mathematics
IMPORTANT
Number of integers in the range of fx=1πsin-1x+tan-1x+x+1x2+2x+5 is
HARD
Mathematics
IMPORTANT
The range of the function fx=cos-1(log4x)-π2+sin-11+x24x is equal to
HARD
Mathematics
IMPORTANT
If the solution set of [x]+x+12+x-13=8 is [a, b), then (a+b) equals to (where [.] denotes greatest integer function).
HARD
Mathematics
IMPORTANT
Number of integral solutions of the inequation x2-10x+25sgnx2+4x-320 is
HARD
Mathematics
IMPORTANT
The range of values of a is such that, 12x=x2-a is satisfied for maximum number of values of x:
HARD
Mathematics
IMPORTANT
The number of solutions of [sinx+cosx]=3+[-sinx]+[-cosx] in the interval [0,2π] is (where [ . ] denotes the greatest integer function.)
HARD
Mathematics
IMPORTANT
If F(x) and G(x) are even and odd extensions of the functions f(x)=xx+sinx+xex, where x(0, 1)g(x)=cos|x|+x2-x, where x(0, 1) respectively to the interval (-1, 0), then F(x)+G(x)  in (-1, 0) is:
HARD
Mathematics
IMPORTANT
Let fx=x1+x and let gx=rx1-x. Then the number of value(s) of r is such that f(g(x))=g(f(x)) for infinitely many real numbers x is