EASY
Earn 100

Let f:RR be a continuous onto function satisfying, f(x)+f(-x)=0 xR, If f(-3)=2 and f(5)=4, then the equation f(x)=0 has how many roots ?

50% studentsanswered this correctly

Important Questions on Continuity and Differentiability

MEDIUM
If the function f defined on π6,π3 by fx=2cosx-1cotx-1, xπ4k,             x=π4 is continuous, then k is equal to
EASY
If fx =1x;x 1ax2+b;1<x<1 is differentiable x , then one of the value of a and b is-
EASY
Let f:-1,3R  be defined as
fx=x+x,x+x,x+x,-1x<11x<22x3,
Where t denotes the greatest integer less than or equal to t. Then, f is discontinuous at:
MEDIUM
If the function f defined on -13,13 by fx=1xloge1+3x1-2x,when x0k,when x=0, is continuous, then k is equal to.
EASY
The value of k which the function fx= 45tan4xtan5x,0<x<π2k+25,x=π2 is continuous at x=π2, is
EASY
If the function fx=aπ-x+1,x5bx-π+3,x>5 is continuous at x=5, then the value of a-b is:
HARD
Let a,bR,a0. If the function f, defined as

fx=2x2a, 0x<1a, 1x<22b2-4bx3, 2x<8,is continuous in the interval 0, , then an ordered pair a,b can be 
MEDIUM
If fx=sina+2x+sinxx;x<0b;x=0x+3x21/3-x1/3x1/3;x>0 is continuous at x=0 , then a+2b is equal to:
EASY
Consider the function fx=x+5x-2ifx21ifx=2 . Then ffx is discontinuous
HARD
Let f :0, πR be defined as

fx=sinx,ifx is irrational and x0,πtan2x,ifx is rational and x0,π,

The number of points in 0, π at which the function f is continuous is
MEDIUM
If  fx=sin(p+1)x+sinxx,x<0q,x=0x+x2-xx3/2,x>0 is continuous at x=0 , then the ordered pair (p, q) is equal to:
MEDIUM
If the function f defined as fx=1x-k-1e2x-1, x0 is continuous at x=0, then ordered pair k,f0 is equal to
MEDIUM
If the function fx=ekx1tankx4x2,x016,x=0 is continuous at x=0, then k = ….
MEDIUM
If fx=x-x4,xR, where x denotes the greatest integer function, then:
MEDIUM
If function fx=x-xx, x<01,           x=0x+xx,x>0 , then
EASY
The function f(x)=tanx is discontinuous on the set
MEDIUM
If fx=sin3xe2x-1;x0k-2;x=0 is continuous at x=0, then the value of k is
EASY
If the function fx=2+cosx-1π-x2,xπk,x=π is continuous at x=π, then k equals
EASY
If fx=logsec2xcot2xforx0Kforx=0 is continuous at x=0 then K is
HARD
Let k be a non - zero real number. If fx=(ex1)2sinxklog1+x4,x012,x=0 is a continuous function at x=0, then the value of k is