HARD
Earn 100

Let f:RR be a function such that it satisfy the functional equation f(x+y)=f(x)+f(y)+xy(x+y). If f'(0)=-1, then which of the following option is correct

50% studentsanswered this correctly

Important Questions on Functions

MEDIUM
Number of functions f:0,10,1 satisfying fx-fy=x-y for all x, y in 0,1 is
MEDIUM
Let, f:RR be a function such that fx=x3+x2f'1+xf"2+f'''3, xR. Then f2 equals
MEDIUM
Let fx=xsin1x , when x01 , when x=0 and A=xR:fx=1. Then, A has
HARD

A function f(x) is given by fx=5x5x+5, then the sum of the series f120+f220+f320++f3920 is equal to:

MEDIUM
If fx+2f1x=3x, x0, and S=xR:fx=f-x, then S
MEDIUM
Let A denote the set of all real numbers x such that x3-[x]3=(x-[x])3, where [x] is the greatest integer less than or equal to x. Then
HARD

Let the function f:0,1 be defined by fx=4x4x+2. Then the value of f140+f240+f340++f3940-f12  is_________

MEDIUM
Let f:RR be defined as fx+y+fx-y=2fxfy,f12=-1. Then the value of k=1201sinksink+fk is equal to :
MEDIUM
Let S be the set of points where the function, fx=2-|x-3|, xR, is not differentiable. Then xSffx is equal to
HARD
Let k=110fa+k=16210-1, where the function f satisfies fx+y=fxfy for all natural numbers x, y and f1=2. Then the natural number a is:
MEDIUM
If a+α=1,b+β=2 and afx+αf1x=bx+βx,x0, then the value of the expression fx+f1xx+1x is ___________.
MEDIUM

Let R be the set of all real numbers and let f be a function R to R such that fx+x+12f1-x=1, for all xR. Then 2f0+3f1 is equal to.

MEDIUM
If fx is an even function and satisfies the relation x2fx-2f1x=gx where gx is an odd function, then f5 equals
MEDIUM
If f(x)=xx-1,f(3x) in terms of f(x) is
MEDIUM
If fx+y=fx+fy-xy-1x,yR and f1=1, then the number of solutions of fn=n, n N is
HARD
If f(x)+2f(1-x)=x2+1,  xR, then the range of f is
HARD
Let S=1,2,3,4,5,6,7. Then the number of possible functions f:SS such that fm·n=fm·fn for every m,nS and m·nS, is equal to _____.
MEDIUM
Let f:RR be a function which satisfies fx+y=fx+fy,  x, yR . If f1=2 and gn=k=1n-1fk, nN then the value of n, for which gn=20, is
MEDIUM
Let f:xy be such that f1=2 and fx+y=fxfy for all natural numbers x and y . If k=1 n f( a+k )=16( 2 n 1 ) then a is equal to
HARD
Let a, b, cR . If fx=ax2+bx+c is such that a+b+c=3 and fx+y=fx+fy+xy,  x, yR , then n=1 10 f(n) is equal to: