MEDIUM
Earn 100

Let ln=2n+-2n2n and Ln=2n+-2n3n then as n

50% studentsanswered this correctly

Important Questions on Limits and Derivatives

EASY

Let fx be a function defined by fx=4x-5, if x2x-λ, if x>2. If limx2fx exists, then the value of λ is

HARD
For each tR, let t be the greatest integer less than or equal to t. Then, limx1+1-x+sin1-xsin1-xπ21-x1-x
MEDIUM
If f:[0,2) is defined by fx=1+2xk for 0x<1kx for 1x<2, where k>0 and f is such that limx1-fx=limx1+fx, then the value of k2 is
HARD
If α=limx0x·2x-x1-cosx and β=limx0x·2x-x1+x2-1-x2, then
MEDIUM
For each xR, let x be the greatest integer less than or equal to x. Then limx0-xx+xsinxx is equal to
MEDIUM
If [x] is the greatest integer function, then limx2+[x]33-x33=
EASY
The value of the limit limθ0tanπcos2θsin2πsin2θ is equal to :
HARD
Let fx be a polynomial of degree 5 such that x=±1 are its critical points. If limx02+fxx3=4, then which one of the following is not true?
EASY
Let fx=x2-1,0<x<22x+3,2x<3, find the quadratic equation whose roots are limx2-fx and limx2+fx.
HARD
Let fx=1-x(1+1-x)|1-x|cos11-x for x1, then
MEDIUM
If S2=at2+2 bt+c, then the acceleration is
MEDIUM
If limx0|x|[cosx]=l; where [.] denotes the greatest integer function, then the value of l is
EASY
Let y=fx=2x2-3x+2. The differential of y when x changes from 2 to 1.99 is
HARD
Determine f defined by f(x)={x2sin(1x)if x00if x=0 is a continuous function.
HARD
Let t denote the greatest integer t. If λ ε R0, 1,  limx01x+xλx+x=L, then L is equal to
HARD
Let F:RR be a function. We say that f has:
 PROPERTY 1  if limh0fh-f0h exists and is finite, and 
PROPERTY 2  if limh0fh-f0h2 exists and is finite.
Then which of the following options is/are correct?
HARD

Let fx be a polynomial of degree four and having its extreme values at x=1 and x=2. If limx0 1+fxx2=3, then f2 is equal to