HARD
JEE Main/Advance
IMPORTANT
Earn 100

Let s, t, r be non-zero complex numbers and L be the set of solutions z=x+iy x, yR, i=-1 of the equation sz+t z¯+r=0, where z¯=x-iy Then, which of the following statement(s) is(are) TRUE?

50% studentsanswered this correctly

Important Questions on Complex Numbers

HARD
JEE Main/Advance
IMPORTANT

Let zk=cos2kπ10-i sin2kπ10; k=1,2,...,9

List I List II
a. For each zk there exists a zj such that zk. zj=1 p.  True
b. There exists a k  1,2,....,9 such that z1z=zk has no solution z in the set of complex numbers. q. False
c. 1-z11-z2.....1-z910 equals r. 1
d. 1-k=09cos 2kπ10 equals s. 2 
HARD
JEE Main/Advance
IMPORTANT

Match the statements given in Column I with the values given in Column II.

  Column I   Column II
A. lnR2, if the magnitude of the projection vector of the vector αi^+βj^ on 3i^+j^ is 3 and if α=2+3β
then possible value(s) of |α| is/are
p 1
B.

Let a and b be real numbers such that the function f(x)=-3ax2-2,x<1bx+a2,x1

is differentiable for all xR. Then, possible value(s) of a is/are

q 2
C. Let ω(1) be a complex cube root of unity. If 3-3ω+2ω24n+3+ 2+3ω-3ω24n+3
+-3+2ω+3ω24n+3=0, then the possible value(s) of n is/are
r 3
D. Let the harmonic mean of two positive real numbers a and b be 4. If q is a positive real number such that a, 5, q, b is in arithmetic progression, then the value(s) of |q-a| is/are s 4
    t 5

 

MEDIUM
JEE Main/Advance
IMPORTANT

Let ω be the complex number cos 2π3+i sin 2π3. Then the number of distinct complex numbers z satisfying

z+1ωω2ωz+ω21ω21z+ω=0 is equal to____.

HARD
JEE Main/Advance
IMPORTANT
If z is any complex number satisfying z-3-2i2, then the minimum value of 2z-6+5i is ___.
MEDIUM
JEE Main/Advance
IMPORTANT
For any integer k, let αk=coskπ7+isinkπ7, where i=-1. Value of the expression k=112αk+1-αkk=13α4k-1-α4k-2.