MEDIUM
Earn 100

Let z1,z2,,z7 be the vertices of a regular heptagon that is inscribed in the unit circle with centre at the origin in the complex plane. Let w=1i<j7zizj, then w is equal to

50% studentsanswered this correctly

Important Questions on Complex Numbers

EASY
The least positive integer n for which 1+i31-i3n=1 is
EASY
If 1, ω, ω2 are the cube roots of unity, then find the value of 1ω+ω23.
MEDIUM
Let ω be a complex number such that 2ω+1=z where z=-3 . If

1111-ω2-1ω21ω2ω7=3k,

Then k can be equal to:
HARD
Let ω be a cube root of unity not equal to 1. Then the maximum possible value of a+bw+cw2 where a,b,c1,-1 is
MEDIUM
If x=a+b+c, y=aα+bβ+c, z = aβ+bα+c where α, β are complex cube roots of unity and a,b,c are real, then xyz is equal to
EASY
If z=ei4π3 , then z192+z1943 is equal to
MEDIUM
Let z0 be a root of quadratic equation, x2+x+1=0.  If z=3+6iz081-3iz093 , then arg z is equal to:
MEDIUM
Let ω1 be a cube root of unity. Then the minimum of the set {a+bω+cω22:a,b,c are distinct non-zero integers } equals ________
EASY
If the fourth roots of unity are z1, z2, z3, z4 then z12+z22+z32+z42 is equal to
EASY
If the cube roots of unity are 1, ω, ω2, then the roots of the equation x+13+8=0 are
MEDIUM
If α, βC are the distinct roots of the equation x2-x+1=0, then α101+β107 is equal to
MEDIUM
The value of -1+i32-100+-1-i32100 is
EASY
If ω is a cube root of unity, then 3+5ω+3ω22+3+3ω+5ω22 is equal to
EASY
The imaginary part of i-313 is
MEDIUM
If z=32+i2 i=-1,  then 1+iz+z5+iz89 is equal to:
EASY
The nth roots of unity are in
EASY
If ω=-1+3i2, then 3+ω+3ω24 is
HARD
Let ω be the complex number cos2π3+isin2π3. Then the number of distinct complex numbers z satisfying z+1ωω2ωz+ω21ω21z+ω=0 is equal to
EASY
If ω is the cube root of unity, then the value of 1-ω1-ω21-ω41-ω8 is