MEDIUM
12th Karnataka Board
IMPORTANT
Earn 100

Maximize Z=3x+4y

subject to the constraints, x+y10x, y0.

Important Questions on Linear Programming

MEDIUM
12th Karnataka Board
IMPORTANT

Minimize Z=6x-5y

subject to the constraints, 2x+5y20x, y0.

MEDIUM
12th Karnataka Board
IMPORTANT

Minimize Z=7x-5y

subject to the constraints, 4x+5y40x, y0.

MEDIUM
12th Karnataka Board
IMPORTANT

Minimize Z=10x-6y

subject to the constraints, 6x+5y30x, y0.

MEDIUM
12th Karnataka Board
IMPORTANT

Maximize Z=-3x+4y

Subject to the constraints, x+2y8,3x+2y12,x0,y0.

HARD
12th Karnataka Board
IMPORTANT

A company produces two types of goods, A and B, that require gold and silver. Each unit of type A requires 3 g of silver and 1 g of gold, while that of type B requires 1 g of silver and 2 g of gold. The company can use at the most 9 g of silver and 8 g of gold. If each unit of type A brings a profit of  120  and that of type B  150, then find the number of units of each type that the company should produce to maximise profit.

Formulate the above LPP and solve it graphically. Also, find the maximum profit.

HARD
12th Karnataka Board
IMPORTANT

A furniture trader deals in only two items - chairs and tables. He has 50,000 rupees to invest and a space to store at most 35 items. A chair costs him 1000 rupees and a table costs him 2000 rupees . The trader earns a profit of 150 rupees and 250 rupees on a chair and table, respectively. Formulate the above problem as an LPP to maximise the profit and solve it graphically.

EASY
12th Karnataka Board
IMPORTANT

Solve the linear programming problem graphically:

Maximize Z=4x+y, subject to the constraints x+y50, 3x+y90, x0, y0.

HARD
12th Karnataka Board
IMPORTANT
A company manufactures and sells two models of lamps L1 and L2, the profit being 15 and 10 respectively. The process involves two workers W1 and W2 who are available for this kind of work 100 hours and 80 hours per month respectively, W1 assembles L1 in 20 and L2 in 30 minutes. W2 paints L1 in 20 and L2 in 10 minutes. Assuming that all lamps made can be sold, formulate LPP for determining the productions figures for maximum profit.