MEDIUM
JEE Main
IMPORTANT
Earn 100

Prove that in triangle ABCr1-rr2-rr3-r=4Rr2, where R is radius of circumcircle and r is radius of incircle, r1, r2 & r3 are the radii of the excircles.

Important Questions on Properties of Triangle

MEDIUM
JEE Main
IMPORTANT
Prove that in triangle ABC1bc+1ca+1ab=12Rr, where R is circumradius of the circumcircle and r is the inradius of incircle, a, b & c are the sides of the triangle ABC.
HARD
JEE Main
IMPORTANT
Prove that in triangle ABCr1bc+r2ca+r3ab=1r-12R, where R is radius of circumcircle and r1, r2 & r3 are the radius of excircles and r is radius of incircle, a, b & c are the sides of the triangle.
HARD
JEE Main
IMPORTANT
Prove that in triangle ABCr2+r12+r22+r32=16R2-a2-b2-c2, where R is radius of circumcircle, r1, r2 & r3 are the radius of excircles, r is radius of incircle and a, b & c are the sides of the triangle. 
MEDIUM
JEE Main
IMPORTANT
If I be the centre of the incircle of a triangle ABC, prove that AI=rcosecA2. where r is the radius of the incircle.
MEDIUM
JEE Main
IMPORTANT

If I is incentre of triangle ABC, prove that: IA·IB·IC=abctanA2tanB2tanC2, where a, b, c are length of sides opposite to angle A, B & C.

 

MEDIUM
JEE Main
IMPORTANT
If I, I1, I2  and I3 be respectively the centres of the incircle and the three escribed circles of a triangle ABC. Prove that: AI1=r1cosecA2.
HARD
JEE Main
IMPORTANT
If I, I1, I2 & I3 be respectively the centres of the incircle and the three escribed circles of a triangle ABC, prove that: II1=a·secA2, where a, b, c are sides of triangle ABC opposite to angle A, B, C.
MEDIUM
JEE Main
IMPORTANT
If I, I1, I2 & I3 be respectively the centres of the incircle and the three escribed circles of a triangle ABC, prove that: I2I3=a·cosecA2.