MEDIUM
Earn 100

Prove that the greatest integer function defined by fx=x;  0<x<3 is not differentiable at x=1 and x=2.

Important Questions on Functions

MEDIUM
Find the number of positive integers n such that the highest power of 7 dividing n! is 8.
MEDIUM

Let x be the greatest integer less than or equal to x, for a real number x. Then the following sum

22020+122018+1+32020+132018+1+42020+142018+1+52020+152018+1+62020+162018+1

is :-

HARD
For any real number x, let [x] denote the integer part of x; {x} be the fractional part of x. x=x-x. Let A denote the set of all real numbers x satisfying x=x+x+x+1220. If S is the sum of all numbers in A, find S.
MEDIUM
Let A={x:x+3+x+43}, B=x:3xr=1310rx-3<3-3x, where [t] denotes greatest integer function. Then,
HARD
The function f :NI defined by fx=x-5x5 , where N is the set of natural numbers and x denotes the greatest integer less than or equal to x, is:
HARD
The equation x24x+[x]+3=x[x], where [x] denotes the greatest integer function, has:
HARD
Consider the sequence of numbers n+2n+12 for n1, where x denotes the greatest integer not exceeding x. If the missing integers in the sequence are n1<n2<n3<.., then find n12.
MEDIUM
Let t denote the greatest integer t and limx0x4x=A. Then the function, fx=x2sinπx is discontinuous, when x is equal to:
MEDIUM
Let t denote the greatest integert. Then the equation in x, x2+2x+2-7=0 has :
MEDIUM
02x2dx is equal to, where · represents greatest integer function
HARD
For a real number r let r denote the largest integer less than or equal to r. Let a>1 a real number which is not an integer and k be the smallest positive integer such that ak>ak Then which of the following statement is always true?
HARD
If [x] denotes the greatest integer x, then the system of linear equations [sinθ]x+[-cosθ]y=0[cotθ]x+y=0
HARD
If a ∈ R  and the equation -3(x - [x])2+2(x - [x])+a2 = 0 (where [x] denotes the greatest integer  x) has no integral solution, then all possible values of a lie in the interval 
HARD
If x,y are positive real numbers such that x·x=36 and y·y=71, then x+y equals
MEDIUM
Let f and g be differentiable functions on R such that fog is the identity function. If for some a, bR, g'a=5 and ga=b, then f'b is equal to:
EASY
If 3x-212, then the complete set of values of x is
EASY
The value of limx0+xpqx is (where · represents greatest integer function)
HARD
For xR,  Let [x] denotes the greatest integer x, then the sum of the series -13+-13-1100+-13-2100+.....+-13-99100 is
HARD
For a real number r we denote by r the largest integer less than or equal to r. If x, y are real numbers with x, y 1 then which of the following statements is always true?