HARD
9th ICSE
IMPORTANT
Earn 100

Prove that the triangle formed by joining the mid-points of the sides of an equilateral triangle is also equilateral.

Important Questions on Mid-Point Theorem

HARD
9th ICSE
IMPORTANT

In ABC, M, N and P are mid-points of sides AB, AC and BC respectively. X,Y,and Z are mid-points of sides of MNP. If XY=2.5 cm, YZ=3.5 cm and XZ=4 cm and , find the sides of ABC.

Question Image  

 

HARD
9th ICSE
IMPORTANT

ABCD is a parallelogram. M is the mid-point of AB and P is a point on diagonal BD such that BP=14BDMP produced meets BC at N. Prove that N is a mid-point of BC.

Question Image   

HARD
9th ICSE
IMPORTANT

ABCD is a parallelogram. M is the mid-point of AB and P is a point on diagonal BD such that BP=14BDMP produced meets BC at NMN=12AC

Question Image  

HARD
9th ICSE
IMPORTANT

In ABC, AM is a median and N is the mid-points of AMBN produced meets AC at P. Prove that AP=13AC.

Question Image  

HARD
9th ICSE
IMPORTANT

ABCD is a rectangle. P,Q,R and S are mid-points of sides of the rectangle as shown in the given figure. Prove that PQRS is a rhombus.

Question Image  

MEDIUM
9th ICSE
IMPORTANT
ABCD is a parallelogram, E and F are the midpoints of AB and CD respectively. GH is any line intersecting AD,EF and BC at G,P and H respectively. Prove that GP=PH.
MEDIUM
9th ICSE
IMPORTANT

ABC is a right-angled triangle with hypotenuse AC=13 cm and side AB=5 cm. Perpendiculars are drawn from mid-point M of AC to AB and BC. What is the perimeter of the resulting quadrilateral?

Question Image  

 

MEDIUM
9th ICSE
IMPORTANT

In the quadrilateral ABCD, ADBC. P and Q are mid-points of AB and AC. Prove that R is the mid-point of DC.

Question Image