MEDIUM
9th CBSE
IMPORTANT
Earn 100

Show that a diagonal divides a parallelogram into two triangles of equal area.

Important Questions on Areas of Parallelograms and Triangles

MEDIUM
9th CBSE
IMPORTANT
In the adjoining figure, ABC and ABD are two triangles on the same base AB. If line segment CD is bisected by AB at O, show that ar(ΔABC)=ar(ΔABD)
Question Image
MEDIUM
9th CBSE
IMPORTANT

D and E are points on sides AB and AC respectively of ABC such that ar(BCD)=ar(BCE). Prove that DEBC.

HARD
9th CBSE
IMPORTANT

P is any point on the diagonal AC of a parallelogram ABCD. Prove that ar(ADP)=ar(ABP)

MEDIUM
9th CBSE
IMPORTANT

Question Image

In the adjoining figure, the diagonals AC and BD of a quadrilateral ABCD intersect at O.
If BO = OD, prove that ar(ABC)=ar(ADC)

MEDIUM
9th CBSE
IMPORTANT

The vertex A of ABC is joined to a point D on the side BC. The midpoint of AD is E.

Prove that ar(BEC)=12ar(ABC).

Question Image

MEDIUM
9th CBSE
IMPORTANT

D is the midpoint of side BC of ABC and E is the midpoint of BD. If O is the midpoint of AE, prove that ar(BOE) =18 ar(ABC).

Question Image

MEDIUM
9th CBSE
IMPORTANT

In a trapezium ABCD, ABDC and M is the midpoint of BC. Through M, a line PQAD has been drawn which meets AB in P and DC produced in Q, as shown in the adjoining figure. Prove that ar(ABCD)=ar(APQD).

Question Image

MEDIUM
9th CBSE
IMPORTANT

In the adjoining figure, ABCD is a quadrilateral. A line through D, parallel to AC, meets BC produced in P. Prove thatar(ABP) =ar(ABCD).

Question Image