EASY
12th West Bengal Board
IMPORTANT
Earn 100

Show that the following vectors are coplanar:

a-2b+3c, 2a+3b-4c, -7b+10c

Important Questions on Vectors

EASY
12th West Bengal Board
IMPORTANT
Find the value of λ so that the vectors λi^+j^+2k^, i^+λj^-k^ and 2i^-j^+λk^ are coplanar.
EASY
12th West Bengal Board
IMPORTANT
Let the position vectors of A, B, C w.r.t. the origin O be given by a+2b, 3a+3b and 2a+b; where a and b are non-collinear. Prove that OABC is a parallelogram.
HARD
12th West Bengal Board
IMPORTANT
Three points A, B, C whose position vectors are 2i^+4j^-k^, 4i^+5j^+k^ and 3i^+6j^-3k^ form a triangle ABC. Show that the triangle is an isosceles right-angled one and also find the direction cosines of BC, CA and AB.
EASY
12th West Bengal Board
IMPORTANT
If a vector makes angles α, β, γ with the co-ordinate axes, then show that, sin2α+sin2β+sin2γ=2.
EASY
12th West Bengal Board
IMPORTANT
The projections of a vector a on the axes are 3, 4 and 12; find the length of a and the direction cosines of a.
MEDIUM
12th West Bengal Board
IMPORTANT
If the position vectors of two points A and B are 3i^+5j^+k^ and 5i^+11j^+4k^, then find the projections of AB on the co-ordinate axes and the direction cosines of AB.
HARD
12th West Bengal Board
IMPORTANT
If the diagonals of a quadrilateral bisect each other, then prove by vector method that the quadrilateral is a parallelogram.
MEDIUM
12th West Bengal Board
IMPORTANT
AD is a median of the triangle ABC. E is the midpoint of the line segment AD. BE is joined and produced to meet AC at F. Prove by vector method that AF=13AC .