MEDIUM
Earn 100

Show that the median of a triangle divides it into two triangles of equal areas

Important Questions on Quadrilaterals

HARD

Let ABCD be a rectangle and M be the midpoint of CD. Suppose AC and BD meet at O, AM and BD meet at X, BM and AC meet at Y. Then

Question Image 

MEDIUM
Find the centroid of the triangle, whose vertices are -4, 4, -2, 2 and -6, 6.
MEDIUM
Find the centroid of the triangle PQR whose vertices are P1,1,Q2,2 and R-3,-3.
MEDIUM
Two vertices of a triangle are -1,4 and 5,2. If the centroid is 0,-3 find the third vertex 
MEDIUM
In ABC the medians AD, BE and CF meet at O. What is the ratio of the area of ABD to the area of AOE?
MEDIUM
The distance from the origin to the centroid of the triangle whose vertices are 7, 1, 1, 5 and 1, 6.
EASY

Centroid of a triangle, whose vertices are -a,0,0,b and a,0 is _____

EASY
The centroid of the triangle formed by the lines x-3y+3=0,x+3y+3=0,x+y-1=0 is
MEDIUM
Let D, E, F be points on the sides BC, CA, AB of a triangle ABC, respectively. Suppose AD, BE, CF are concurrent at P. If PFPC=23, PEPB=27 and PDPA=mn where m, n are positive integers with gcd(m,n)=1. Find m+n.
EASY
The vertices of a triangle are 3,-5 and -7,4. If its centroid is 2,-1, then the third vertex is
HARD
In an isosceles triangle ABC, the vertex A is 6,1 and the equation of the base BC is 2x+y=4. Let the point B lie on the line x+3y=7. If α,β is the centroid ABC, then 15α+β is equal to
MEDIUM
Let D be the centroid of the triangle with vertices 3,-1 , 1,3 and 2,4 . Let P be the point of intersection of the lines x+3y-1=10 and 3x-y+1=0 . Then, the line passing through the points D and P also passes through the point:
MEDIUM
The distance of the origin from the centroid of the triangle whose two sides have the equations x-2y+1=0 and 2x-y-1=0 and whose orthocenter is 73, 73 is:
HARD

Let G be the centroid of the triangle ABC in which the angle C is obtuse. Let AD and CF are the medians from A and C on the sides BC and AB respectively. If the four points B,D,G and F are concyclic, then BCAC

MEDIUM
Suppose ABC is an isosceles triangle with C=90°,A=2,3 and B=4,5. Then the centroid of the triangle is
HARD
The equations of the sides AB, BC & CA of a triangle ABC are 2x+y=0x+py=21a a0 and x-y=3 respectively. Let P2,a be the centroid of the triangle ABC, then BC2 is equal to
EASY
A2,4, B3,5, C4,3 are the vertices of ABC. Hence the coordinate of centroid of the triangle is _____.
HARD
Let a,b,c be in arithmetic progression. Let the centroid of the triangle with vertices a,c,2,b and a,b be 103,73. If α,β are the roots of the equation ax2+bx+1=0, then the value of α2+β2-αβ is:
HARD
Let A1,0,B6,2 and C32,6 be the vertices of a triangle ABC. If P is a point inside the triangle ABC such that the triangles APC,APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point -76,-13, is
HARD
The centroid of an equilateral triangle is 0,0. If two vertices of the triangle lie on x+y = 22, then one of them will have its coordinates as