EASY
Earn 100

State Ceva's theorem.

Important Questions on Theorems of Concurrency

MEDIUM
If ABCD is a rectangle and P is a point inside it such that AP=33, BP=16, DP=63. Find CP.
EASY
In a trapezium ABCDBCAD and AD=4 cm. The two diagonals AC and BD intersect at the point O in such a way that AOOC=DOOB=12. Calculate the length of BC in cm.
EASY

In the given figure DE || BC and ADDB=35 if AC=16 units then the value of AE will be

Question Image

MEDIUM

In ABC, DEBC, If AD=5 cm, BD=7 cm and AC=18 cm, If the length of AE=k, then find the value of k.

Question Image

MEDIUM

In ABC, LMBC and ALLB=23, AM=5 cm, find AC

MEDIUM

In Fig 2, DEAC and DCAP. Prove that BEEC=BCCP

Question Image

MEDIUM

In a ABC, a line parallel to BC intersects AB and AC at P and Q. If AQ=3AP, then BP:CQ is _____.

MEDIUM

In trapezium ABCD, ABCD; The diagonals AC & BD meet at O. Prove that AO×OD=BO×OC.

MEDIUM

In ABC, the line parallel to BC meets AB and AC at P and Q. If AB=3PB, then find PQ:BC.

HARD

Two parallel straight lines intersect three concurrent straight lines at A,B,C and X,Y,Z. Prove that AB:BC=XY:YZ.

EASY
If in ABC, DEBCAB=3.6 cm, AC=2.4 cm and AD=2.1 cm then the length of AE is
MEDIUM
Prove that the circles described on the four sides of a rhombus as diameters, pass through the point of intersection of its diagonals.
MEDIUM

In ABC the line parallel to BC meets AB and AC at P and Q and APPB=25. If AC=28 cm, then length of AQ is 

HARD

In ABC, the line parallel to BC meets AB and AC at P and Q. If AP=8 cm, CQ=9 cm and AQ=2BP, then what is the value of BP?

MEDIUM

In ABC the line parallel to BC meets AB and AC at D and E. If AD=4.8 cm, AE=6.4 cm, EC=9.6 cm then the length of AB is 

MEDIUM

In ABC, the line parallel to BC meets AB and AC at D and E. If AD:DB=3:2 and AC=10 cm, thus what is the value of AE?

MEDIUM
Prove that the line segment joining the midpoint of the hypotenuse of a right triangle to its opposite vertex is half of the hypotenuse.
MEDIUM

In ABC the line parallel to BC meets AB and AC at D and E. If AE=2AD then DB:EC is equal to 

MEDIUM

In  ABC, DEDEBC. If AD=5 cm, BD=7 cm and AC=18 cm, find the length of  AE in centimrter.

Question Image

MEDIUM

In ABC the line parallel to BC meets AB and AC at X and Y and AX:XB=3:1. If AY=6.6 cm, then length of AC is