HARD
Earn 100

Statement-I: The value of the integral π6π3dx1+tanx is equal to π6.

Statement-II: abfxdx=abfa+b-xdx.

7.84% studentsanswered this correctly

Important Questions on Integrals

MEDIUM
The value of -π2π2x2cosx1+ex dx is equal to
MEDIUM
The integral 24logx2logx2+log6-x2dx is equal to
HARD
The integral 0π1+sin2x2-sinx2dx equals 
MEDIUM

Statement - I : The value of the integral π/6π/3dx1+tan x is equal to π6.

Statement - II : abfxdx=abfa+b-xdx.

HARD
Let f:RR be a function such that f2-x=f2+x and f4-x=f4+x, for all xR and 02fxdx=5. Then the value of 1050fxdx is
EASY
03xdx=______, where x is greatest integer function
MEDIUM
Let fx=0xgtdt, where g is a non-zero even function. If fx+5=gx, then 0xf(t)dt equals
EASY
The value of 02πsin2x1+cos3xdx , where [t] denotes the greatest integer function is
HARD
Let fx=max3, x2,1x2 for 12x2. Then the value of the integral 122fxdx is
HARD
Define gx=-33fx-yfydy, for all real x, where ft=1,0t10,elsewhere, then
EASY
Let f and g be continuous functions on 0,a such that fx=fa-x and gx+ga-x=4, then 0afxgxdx is equal to
MEDIUM
If 0π2 logcosx dx=π2log12, then 0π2 logsecx dx=
HARD
The integral value of π43π4x1+sinxdx=
HARD
The integral value of  0 π 2 2 sinx 2 sinx + 2 cosx dx=
MEDIUM
If fx=2-xcosx2+xcosx and g(x)=logex, then the value of the integral -π4π4gfxdx is
MEDIUM
The value of the integral -ππcos2x1+axdx, a>0 is