MEDIUM
JEE Main/Advance
IMPORTANT
Earn 100

Suppose four distinct positive numbers a1, a2, a3, a4 are in G.P. Let b1=a1, b2=b1+a2, b3=b2+a3 and b4=b3+a4.

STATEMENT - 1: The numbers b1, b2, b3, b4 are neither in A.P. nor in G.P.

STATEMENT - 2: The numbers b1, b2, b3, b4 are in H.P.

50% studentsanswered this correctly

Important Questions on Sequences and Series

HARD
JEE Main/Advance
IMPORTANT
If the sum of first n terms of an A.P. is cn2, then the sum of squares of these n terms is
HARD
JEE Main/Advance
IMPORTANT
Let Sk, k=1,2...., 100, denote the sum of the infinite geometric series whose first term is k-1k ! and the common ratio is 1k, then the value of 1002100 !+k=1100k2-3k+1Sk is
HARD
JEE Main/Advance
IMPORTANT
Let a1, a2, a3,...., a11 be real numbers satisfying a1=15, 27-2a2>0 and ak=2ak-1-ak-2 for k=3, 4,..., 11. If a12+a22+....+a11211=90, then the value of a1+a2+...+a1111 is equal to            .
HARD
JEE Main/Advance
IMPORTANT
Let a1, a2, a3,, a100 be an arithmetic progression with a1=3 and Sp=i=1pai, 1p100 for any integer n with 1n20, let m=5n. If SmSndoes not depend on n, then a2 is
MEDIUM
JEE Main/Advance
IMPORTANT
The minimum value of the sum of real numbers a-5, a-4, 3a-3, 1, a8 and a10, where a>0 is
HARD
JEE Main/Advance
IMPORTANT
Let a1, a2, a3,. be in harmonic progression with a1=5 and a20=25. The least positive integer n for which an<0 is
HARD
JEE Main/Advance
IMPORTANT
Let Sn=k=14n(-1)k(k+1)2k2. ThenSncan take value (s)
HARD
JEE Main/Advance
IMPORTANT
A pack contains n cards numbered from 1 to n. Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is 1224. If the smaller of the numbers on the removed cards is k, then k-20 =             .