HARD
Earn 100

Suppose n be an integer greater than 1. Let an=1logn2002. Suppose b=a2+a3+a4+a5 and c=a10+a11+a12+a13+a14. Then find the value of (c-b)

100% studentsanswered this correctly

Important Questions on Relations and Functions

HARD
If N=m! (where m is a fixed positive integer >2), then 1log2N+1log3N+1log4N+.....+1logmN=
EASY
The common difference of A.P. log22, log24, log28 is
EASY
If a=log23,b=log25 and c=log72, then log14063 in terms of a,b,c is
MEDIUM
If log26+12x=log221x+8 then the values of x are
EASY
If S=1212+13-14122+132+16123+133 then S=
EASY
Ifx, y, z are positive real numbers such that x12=y16=z24, and the three quantities 3logyx,4logzy,nlogxz are in arithmetic progression, then the value of n is
MEDIUM
The solution of the equation 3logax+3xloga3=2 is given by
MEDIUM
If  log3 x+log53 x+log54 x+......  up to 7 terms =35, then the value of x is :
MEDIUM
The value of log2921log2log29×71log47 is