MEDIUM
10th CBSE
IMPORTANT
Earn 100

The areas of two similar triangles are 100 cm2 and 49 cm2 respectively. If the altitude of the bigger triangle is 5 cm, find corresponding altitude of the other.

50% studentsanswered this correctly

Important Questions on Similar Triangles

MEDIUM
10th CBSE
IMPORTANT

The areas of two similar triangles are 81 cm2 and 49 cm2 respectively. If the altitude of the first triangle is 6.3 cm, find corresponding altitude of the other.

MEDIUM
10th CBSE
IMPORTANT
Diagonals of a rhombus are 15 cm and 36 cm in length. If the perimeter of the rhombus is P cm, then find the value of P.
MEDIUM
10th CBSE
IMPORTANT
In a square ABCDE is a point on BC such that BE=13BC and F is a point on AB such that BF=12AB. If area of BEF is 108 cm2 and the length of diagonal of square is k2 cm, then find the value of k.
HARD
10th CBSE
IMPORTANT
M is a point in the interior of a PQR right angled at P, such that RMP=90°. If length of sides RM, PM and QR are 6 cm, 8 cm and 26 cm respectively, and the area of PQR=k cm2 then findk
MEDIUM
10th CBSE
IMPORTANT

In a right triangle ABC, right angled at C, P and Q are the points of the sides CA and CB respectively, which divide these sides in the ratio 2:1. Prove that 9AQ2=9AC2+4BC2.

MEDIUM
10th CBSE
IMPORTANT

In a right triangle ABC, right angled at C, P and Q are the points of the sides CA and CB respectively, which divide these sides in the ratio 2:1. Prove that 9BP2=9BC2+4AC2

HARD
10th CBSE
IMPORTANT

In a right triangle ABC, right angled at C, P and Q are the points of the sides CA and CB respectively, which divide these sides in the ratio 2:1. Prove that 9AQ2+BP2=13AB2.

MEDIUM
10th CBSE
IMPORTANT

P and Q are the mid points on the sides CA and CB respectively of ABC right angled at C. Prove that 4AQ2+BP2=5AB2.