MEDIUM
Earn 100

The current through two inductors of 12 mH and 30 mH is increasing with time at the same rate. Draw the graphs showing the variation of the energy stored in each inductor with the current flowing through it. Compare the energy stored in the coils if the power dissipated in the coil is the same. 

Important Questions on Electromagnetic Induction and Alternating Currents

MEDIUM
A straight conductor of length 0.4 m is moving with a speed of 7 ms-1 perpendicular to the magnetic field of intensity of 0.9 Wb m-2. The induced emf across the conductor will be
MEDIUM

A metallic rod of length l is tied to a string of length 2l and made to rotate with angular speed ω on a horizontal table with one end of the string fixed. If there is a vertical magnetic field B in the region, the e.m.f. induced across the ends of the rod is:

 Question Image

HARD
A conducting square frame of side a and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity V. The e.m.f induced in the frame (when the centre of the frame is at a distance x from the wire) will be proportional to :
Question Image
MEDIUM
Two different coils have self-inductance L1=9 mH and L2=3 mH. At a certain instant, the current in the two coils is increasing at the same rate and the power supplied to the coils is also the same. The ratio of the energy stored in the two coils U1U2at that instant is
HARD
A conducting loop in the shape of right angled isosceles triangle of height 10 cm is kept such that the 90o vertex is very close to an infinitely long conducting wire (see the figure). The wire is electrically insulated from the loop. The hypotenuse of the triangle is parallel to the wire. The current in the triangular loop is in counterclockwise direction and increased at constant rate of 10 A s-1. Which of the following statement(s) is (are) true?
Question Image
HARD

In the following circuit the switch Sis closed at t =0. The charge on the capacitor C1 as a function of time will be given by Ceq= C1C2C1+ C2

Question Image

EASY
When the current in a coil changes from 5 A to 2 A in 0.1 s, an average voltage of 50V is produced. The self-inductance of the coil is
HARD

A square frame of side 10 cm and a long straight wire carrying current 1 A are in the plane of the paper. Starting from close to the wire, the frame moves towards the right with a constant speed of 10 m s-1 (see figure). The e.m.f induced at the time the left arm of the frame is at x=10 cm from the wire is

Question Image

EASY
A 10 m long horizontal wire extends from North East to South West. It is falling with a speed of 5.0 m s-1, at right angles to the horizontal component of the earth's magnetic field of 0.3×10-4 Wb m-2. The value of the induced emf in the wire is:
EASY
A solid metal cube of edge length 2 cm is moving in the positive y-direction, at a constant speed of 6 m s-1. There is a uniform magnetic field of 0.1 T in the positive z-direction. The potential difference between the two faces of the cube, perpendicular to the x-axis, is
EASY
A coil of cross-sectional area A having n turns is placed in a uniform magnetic field B. When it is rotated with an angular velocity ω, the maximum e.m.f. induced in the coil will be:
EASY
For a long current carrying solenoid having inside magnetic field is 0.6 T. Find the magnetic energy per unit volume.
EASY

In a coil of resistance 100 Ω, a current is induced by changing the magnetic flux through it as shown in the figure. The magnitude of change in flux through the coil is:
Question Image

MEDIUM
A uniform magnetic field is restricted within a region of radius,  r. The magnetic field changes with time at a rate, dBdt. Loop one of radius R>r encloses the region, r and loop two of radius, R is outside the region of magnetic field as shown in the figure below. Then the emf generated is

Question Image
EASY
A long solenoid of diameter 0.1 m has 2×104 turns per meter. At the centre of the solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to 0 A from 4 A in 0.05 s. If the resistance of the coil is 10π2 Ω, the total charge flowing through the coil during this time is
HARD
Consider a thin metallic sheet perpendicular to the plane of the paper moving with speed v in a uniform magnetic field B going into the plane of the paper (see figure). If charge densities σ1 and σ2 are induced on the left and right surfaces respectively of the sheet, then (ignore fringe effects)

Question Image
HARD

Question Image

The figure shows a circular area of tthe radius R where a uniform magnetic field B is going into the plane of the paper and increasing in magnitude at a constant rate. In that case, which of the following graphs, drawn schematically, correctly shows the variation of the induced electric field E(r)?

HARD
A circular loop of radius 0.3 cm lies parallel to a much bigger circular loop of radius 20 cm. The centre of the small loop is on the axis of the bigger loop. The distance between their centres is 15 cm. If a current of 2.0 A flows through the smaller loop, then the flux linked with a bigger loop is:
MEDIUM
The ratio of energy stored per unit volume in a solenoid having magnetic induction B to the electrostatic energy stored per unit volume in a capacitor in elcctric field E is
MEDIUM
The energy stored in a 40 mH inductor when a current of 6 A passes through it is