HARD
MHT-CET
IMPORTANT
Earn 100

The maximum of z=5x+2y subject to the constraints x+y7, x+2y10, x, y0 is

50% studentsanswered this correctly

Important Questions on Linear Programming

HARD
MHT-CET
IMPORTANT
The maximum value of 2x+y is subject to 3x+5y26 and 5x+3y30, x0, y0 is
HARD
MHT-CET
IMPORTANT

By the graphical method, the solution of linear programming problem: 

Maximize z=3x1+5x2 subject to 3x1+2x218, x14, x26, x10, x20 is

HARD
MHT-CET
IMPORTANT
The maximum value of 4x+5y subject to the constraints x+y20, x+2y35, x-3y12 is
HARD
MHT-CET
IMPORTANT
Maximum value of z equals 3x+2y subject to x+y3, x2, -2x+y1, x0, y0 is
HARD
MHT-CET
IMPORTANT
The point at which the maximum value of 3x+2y subject to the constraints x+y2, x0, y0 obtained is
HARD
MHT-CET
IMPORTANT

The point which provides the solution of the linear programming problem : Maximise 45x+55y subject to constraints x, y0, 6x+4y120, 3x+10y180 is

HARD
MHT-CET
IMPORTANT

The point which provides the solution to the linear programming problem:

Maximize P=2x+3y subject to the constraints: x0, y0, 2x+2y9, 2x+y7, x+2y8 is

EASY
MHT-CET
IMPORTANT
The corner points of the feasible region determined by the system of linear constraints are 0, 10, 5, 5, 15, 15, 0, 20. Let z=px+qy, where p, q>0. Condition on p and q, so that the maximum of z occurs at both the points 15, 15 and 0, 20 is