EASY
Earn 100

The theorem that we use in finding the length of space diagonal in rectangular prism is ?

50% studentsanswered this correctly

Important Questions on Space

MEDIUM
A(4,2), B(6,5) and C (1,4) are the vertices of ABC.
The median from A meets BC in D. Find the coordinates of the point D.
MEDIUM

Determine the ratio in which the straight line x-y-2=0 divides the line segment joining (3,-1) and (8,9).

MEDIUM
Points P,Q,R and S divides the line segment joining A(1,2) and B(6,7) in 5 equal parts. Find the coordinates of the points P, Q and R.
MEDIUM
The line joining the points (2,1) and (5,8) is trisected at the points P and Q. If point P lies on the line 2xy +k=0. Find the value of k.
MEDIUM
If three consecutive vertices of a parallelogram are (1,2), (3,6) and (5,10), find its fourth vertex.
HARD
ABCD is a rectangle formed by joining the points A(1,1), B(1,4), C(5,4), and D(5,1). P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively. Is the quadrilateral PQRS a square? a rectangle? or a rhombus? Justify your answer.
MEDIUM
A point P divides the line segment joining the points A(3,5) and B(4,8) such that APPB=k1. If P lies on the line x+y=0, then find the value of k.
MEDIUM
Show that the mid-point of the line segment joining the points (5,7) and (3,9) is also the mid-point of the line segment joining the points (8,6) and (0,10).
HARD
If the coordinates of the mid-points of the sides of a triangle are (3,4), (4,6), and (5,7), then find its vertices.
MEDIUM
If A and B are (1,4) and (5,2) respectively, find the coordinates of P when APBP=34.
MEDIUM
If the points A(a,11), B (5,b), C(2,15) and D(1,1) are the vertices of a parallelogram ABCD, find the values of a and b.
MEDIUM
The line segment joining the points (3,-4) and (1,2) is trisected at the points P and Q. If the coordinates of P and Q are (p,-2) and (53,q) respectively. Find the values of p and q.
MEDIUM
If A and B are two points having coordinates (2,2) and (2,4) respectively, find the coordinates of P such that AP=37AB.
MEDIUM

A(4,2), B(6,5) and C(1,4) are the vertices of ABC. The median from A meets BC at D=72,92. Find the coordinates of point P on AD such that AP:PD=2:1.

MEDIUM
Determine the ratio in which the point (6,a) divides the join of A(3,1) and B(8,9). Also, find the value of a.
MEDIUM
If two vertices of a parallelogram are (3, 2) (1, 0) and the diagonals cut at (2, 5), find the other vertices of the parallelogram.
EASY
Cotyledons are also called-
MEDIUM
Determine the ratio in which the point P(m,6) divides the join of A(4,3) and B(2,8). Also, find the value of m.
MEDIUM
Find the coordinates of the points which divide the line segment joining A(2,2) and B (2,8) into four equal parts.
HARD
If the coordinates of the mid-point of the sides of a triangle be (3,-2), (-3,1) and (4,-3), then find the coordinates of its vertices.