HARD
12th ICSE
IMPORTANT
Earn 100

The two adjacent sides of a parallelogram are represented by the vectors 2i^-4j^-5k^ and 2i^+2j^+3k^. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.

Important Questions on Vectors

MEDIUM
12th ICSE
IMPORTANT

If a=2i^-3j^+4k^, b=i^+2j^-3k^ and c= 3i^+4j^-k^, then find (a×b)·c and a·b×c. Is a×b·c=a·b×c?

EASY
12th ICSE
IMPORTANT

If a=2i^-3j^+4k^, b=i^+2j^-k^ andc= 3i^-j^+2k^, then find a b c.

EASY
12th ICSE
IMPORTANT

If a=2i^-3j^+4k^, b=i^+2j^-k^ and c= 3i^-j^+2k^, then find a+b b+c c+a.

MEDIUM
12th ICSE
IMPORTANT

Prove a, b, c + d = a, b, c + a, b, d

MEDIUM
12th ICSE
IMPORTANT

If i^, j^ and k^ are three mutually perpendicular unit vectors, then prove that i^·k^×j^=j^·i^×k^=k^·j^×i^=-1.

HARD
12th ICSE
IMPORTANT

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors a=2i^-3j^+4k^, b=i^+2j^-k^ and c=2i^-j^+2k^.

MEDIUM
12th ICSE
IMPORTANT

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors i^+j^+ k^, i^-j^+k^ and i^+2j^.

MEDIUM
12th ICSE
IMPORTANT

Show that these vectors are coplanar a=-4i^-6j^-2k^, b=-i^+4j^+3k^ and c=-8i^-j^+3k^.