HARD
JEE Main
IMPORTANT
Earn 100

The value of limn[12x+12]+[22x+22]+...+[n2x+n2]n3 is: (where · denotes the greatest integer function.)

50% studentsanswered this correctly

Important Questions on Limits

HARD
JEE Main
IMPORTANT

The value of limxπ2limn12(sinx)x+22(sinx)x+...+n2(sinx)xn3 is (where · denotes the greatest integer function.):

 

Remark: Limit for x is changed from  to π2 else the limit will not exist.

HARD
JEE Main
IMPORTANT
The value of limn k=1n log1+kn1n, is
HARD
JEE Main
IMPORTANT
The value of limn1na+1na+1+1na+2+....+1nb, is
MEDIUM
JEE Main
IMPORTANT
If I1=limxtan-1πx-tan-1xcosx and I2=limx0tan-1πx-tan-1xcosx then I1, I2 is:
MEDIUM
JEE Main
IMPORTANT
If fx=0 be a quadratic equation that f-π=fπ=0 and fπ2=-3π24, then limx-πfxsinsinx is equal to: